/*******************************************************************************************[Vec.h] Copyright (c) 2003-2007, Niklas Een, Niklas Sorensson Copyright (c) 2007-2010, Niklas Sorensson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************************************/ #ifndef Vec_h #define Vec_h #include #include #include #include #include #include "XAlloc.h" namespace CMSat { //================================================================================================= // Automatically resizable arrays // // NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc) template class vec { public: T* data; T* begin() { return data; } T* end() { return data + sz; } const T* begin() const { return data; } const T* end() const { return data + sz; } private: uint32_t sz; uint32_t cap; // Don't allow copying (error prone): vec& operator = (vec& /*other*/) { assert(0); return *this; } vec (vec& /*other*/) { assert(0); } // Helpers for calculating next capacity: static inline uint32_t imax (int32_t x, int32_t y) { int32_t mask = (y - x) >> (sizeof(uint32_t) * 8 - 1); return (x & mask) + (y & (~mask)); } //static inline void nextCap(uint32_t& cap){ cap += ((cap >> 1) + 2) & ~1; } static inline void nextCap(uint32_t& cap) { cap += ((cap >> 1) + 2) & ~1; } public: // Constructors: vec() : data(NULL) , sz(0) , cap(0) { } explicit vec(uint32_t size) : data(NULL) , sz(0) , cap(0) { growTo(size); } vec(uint32_t size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); } ~vec() { clear(true); } // Size operations: uint32_t size() const { return sz; } void shrink (uint32_t nelems) { assert(nelems <= sz); for (uint32_t i = 0; i < nelems; i++) { sz--, data[sz].~T(); } } void shrink_ (uint32_t nelems) { assert(nelems <= sz); sz -= nelems; } uint32_t capacity () const { return cap; } void capacity (int32_t min_cap); void growTo (uint32_t size); void growTo (uint32_t size, const T& pad); void clear (bool dealloc = false); // Stack interface: void push () { if (sz == cap) { capacity(sz + 1); } new (&data[sz]) T(); sz++; } void push (const T& elem) { if (sz == cap) { capacity(sz + 1); } data[sz++] = elem; } void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; } void pop () { assert(sz > 0); sz--, data[sz].~T(); } // NOTE: it seems possible that overflow can happen in the 'sz+1' expression of 'push()', but // in fact it can not since it requires that 'cap' is equal to INT_MAX. This in turn can not // happen given the way capacities are calculated (below). Essentially, all capacities are // even, but INT_MAX is odd. const T& last () const { return data[sz - 1]; } T& last () { return data[sz - 1]; } // Vector interface: const T& operator [] (uint32_t index) const { return data[index]; } T& operator [] (uint32_t index) { return data[index]; } // Duplicatation (preferred instead): void copyTo(vec& copy) const { copy.clear(); copy.growTo(sz); for (uint32_t i = 0; i < sz; i++) { copy[i] = data[i]; } } void moveTo(vec& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; } void swap(vec& dest) { std::swap(dest.data, data); std::swap(dest.sz, sz); std::swap(dest.cap, cap); } void resize(uint32_t s) { if (s < sz) { shrink(sz - s); } else { growTo(s); } } bool empty() const { return sz == 0; } void shrink_to_fit() { if (sz == 0) { free(data); cap = 0; data = NULL; return; } T* data2 = (T*)realloc(data, sz*sizeof(T)); if (data2 == 0) { //We just keep the size then return; } data = data2; cap = sz; } }; template void vec::capacity(int32_t min_cap) { if ((int32_t)cap >= min_cap) { return; } uint32_t add = imax((min_cap - cap + 1) & ~1, ((cap >> 1) + 2) & ~1); // NOTE: grow by approximately 3/2 if (add > std::numeric_limits::max() - cap || (((data = (T*)::realloc(data, (cap += (uint32_t)add) * sizeof(T))) == NULL) && errno == ENOMEM) ) { throw std::bad_alloc(); } } template void vec::growTo(uint32_t size, const T& pad) { if (sz >= size) { return; } capacity(size); for (uint32_t i = sz; i < size; i++) { data[i] = pad; } sz = size; } template void vec::growTo(uint32_t size) { if (sz >= size) { return; } capacity(size); for (uint32_t i = sz; i < size; i++) { new (&data[i]) T(); } sz = size; } template void vec::clear(bool dealloc) { if (data != NULL) { for (uint32_t i = 0; i < sz; i++) { data[i].~T(); } sz = 0; if (dealloc) { free(data), data = NULL, cap = 0; } } } //================================================================================================= } #endif