/****************************************** Copyright (c) 2016, Mate Soos Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ***********************************************/ #include "clausecleaner.h" #include "clauseallocator.h" #include "solver.h" #include "solvertypesmini.h" using namespace CMSat; //#define DEBUG_CLEAN //#define VERBOSE_DEBUG ClauseCleaner::ClauseCleaner(Solver* _solver) : solver(_solver) { } bool ClauseCleaner::satisfied(const Watched& watched, Lit lit) { assert(watched.isBin()); if (solver->value(lit) == l_True) return true; if (solver->value(watched.lit2()) == l_True) return true; return false; } void ClauseCleaner::clean_binary_implicit( Watched& ws , Watched*& j , const Lit lit ) { if (satisfied(ws, lit)) { //Only delete once if (lit < ws.lit2()) { (*solver->drat) << del << lit << ws.lit2() << fin; } if (ws.red()) { impl_data.remLBin++; } else { impl_data.remNonLBin++; } } else { assert(solver->value(ws.lit2()) == l_Undef); assert(solver->value(lit) == l_Undef); *j++ = ws; } } void ClauseCleaner::clean_implicit_watchlist( watch_subarray& watch_list , const Lit lit ) { Watched* i = watch_list.begin(); Watched* j = i; for (Watched* end2 = watch_list.end(); i != end2; i++) { if (i->isClause()) { *j++ = *i; continue; } assert(!solver->drat->something_delayed()); if (i->isBin()) { clean_binary_implicit(*i, j, lit); continue; } } watch_list.shrink_(i - j); } void ClauseCleaner::clean_implicit_clauses() { assert(!solver->drat->something_delayed()); assert(solver->decisionLevel() == 0); impl_data = ImplicitData(); size_t wsLit = 0; size_t wsLit2 = 2; for (size_t end = solver->watches.size() ; wsLit != end ; wsLit++, wsLit2++ ) { if (wsLit2 < end && !solver->watches[Lit::toLit(wsLit2)].empty() ) { solver->watches.prefetch(Lit::toLit(wsLit2).toInt()); } const Lit lit = Lit::toLit(wsLit); watch_subarray ws = solver->watches[lit]; if (ws.empty()) continue; clean_implicit_watchlist(ws, lit); } impl_data.update_solver_stats(solver); #ifdef DEBUG_IMPLICIT_STATS solver->check_implicit_stats(); #endif } void ClauseCleaner::clean_clauses(vector& cs) { clean_clauses_pre(); clean_clauses_inter(cs); clean_clauses_post(); } void ClauseCleaner::clean_clauses_inter(vector& cs) { assert(!solver->drat->something_delayed()); assert(solver->decisionLevel() == 0); assert(solver->prop_at_head()); #ifdef VERBOSE_DEBUG cout << "Cleaning clauses" << endl; #endif //VERBOSE_DEBUG vector::iterator s, ss, end; size_t at = 0; for (s = ss = cs.begin(), end = cs.end(); s != end; ++s, ++at) { if (at + 1 < cs.size()) { Clause* pre_cl = solver->cl_alloc.ptr(cs[at+1]); __builtin_prefetch(pre_cl); } const ClOffset off = *s; Clause& cl = *solver->cl_alloc.ptr(off); const Lit origLit1 = cl[0]; const Lit origLit2 = cl[1]; const auto origSize = cl.size(); const bool red = cl.red(); if (clean_clause(cl)) { solver->watches.smudge(origLit1); solver->watches.smudge(origLit2); cl.setRemoved(); if (red) { solver->litStats.redLits -= origSize; } else { solver->litStats.irredLits -= origSize; } delayed_free.push_back(off); } else { *ss++ = *s; } } cs.resize(cs.size() - (s-ss)); } inline bool ClauseCleaner::clean_clause(Clause& cl) { assert(!solver->drat->something_delayed()); assert(cl.size() > 2); (*solver->drat) << deldelay << cl << fin; #ifdef SLOW_DEBUG uint32_t num_false_begin = 0; Lit l1 = cl[0]; Lit l2 = cl[1]; num_false_begin += solver->value(cl[0]) == l_False; num_false_begin += solver->value(cl[1]) == l_False; #endif Lit *i, *j, *end; uint32_t num = 0; for (i = j = cl.begin(), end = i + cl.size(); i != end; i++, num++) { lbool val = solver->value(*i); if (val == l_Undef) { *j++ = *i; continue; } if (val == l_True) { (*solver->drat) << findelay; return true; } } if (i != j) { cl.shrink(i-j); (*solver->drat) << cl << fin << findelay; } else { solver->drat->forget_delay(); } assert(cl.size() > 1); assert(solver->value(cl[0]) == l_Undef); assert(solver->value(cl[1]) == l_Undef); #ifdef SLOW_DEBUG //no l_True, so first 2 of orig must have been l_Undef if (num_false_begin != 0) { cout << "val " << l1 << ":" << solver->value(l1) << endl; cout << "val " << l2 << ":" << solver->value(l2) << endl; } assert(num_false_begin == 0 && "Propagation wasn't full? Watch lit was l_False and clause wasn't satisfied"); #endif if (i != j) { if (cl.size() == 2) { solver->attach_bin_clause(cl[0], cl[1], cl.red()); return true; } else { if (cl.red()) { solver->litStats.redLits -= i-j; } else { solver->litStats.irredLits -= i-j; } } } return false; } bool ClauseCleaner::satisfied(const Clause& cl) const { for (uint32_t i = 0; i != cl.size(); i++) if (solver->value(cl[i]) == l_True) return true; return false; } void ClauseCleaner::ImplicitData::update_solver_stats(Solver* solver) { for(const BinaryClause& bincl: toAttach) { assert(solver->value(bincl.getLit1()) == l_Undef); assert(solver->value(bincl.getLit2()) == l_Undef); solver->attach_bin_clause(bincl.getLit1(), bincl.getLit2(), bincl.isRed()); } assert(remNonLBin % 2 == 0); assert(remLBin % 2 == 0); solver->binTri.irredBins -= remNonLBin/2; solver->binTri.redBins -= remLBin/2; } void ClauseCleaner::clean_clauses_pre() { assert(solver->watches.get_smudged_list().empty()); assert(delayed_free.empty()); } void ClauseCleaner::clean_clauses_post() { solver->clean_occur_from_removed_clauses_only_smudged(); for(ClOffset off: delayed_free) { solver->cl_alloc.clauseFree(off); } delayed_free.clear(); } void ClauseCleaner::remove_and_clean_all() { double myTime = cpuTime(); clean_implicit_clauses(); clean_clauses_pre(); clean_clauses_inter(solver->longIrredCls); for(auto& lredcls: solver->longRedCls) { clean_clauses_inter(lredcls); } clean_clauses_post(); #ifndef NDEBUG //Once we have cleaned the watchlists //no watchlist whose lit is set may be non-empty size_t wsLit = 0; for(watch_array::iterator it = solver->watches.begin(), end = solver->watches.end() ; it != end ; ++it, wsLit++ ) { const Lit lit = Lit::toLit(wsLit); if (solver->value(lit) != l_Undef) { assert(it->empty()); } } #endif if (solver->conf.verbosity) { cout << "c [clean] T: " << std::fixed << std::setprecision(4) << (cpuTime() - myTime) << " s" << endl; } } bool ClauseCleaner::clean_one_xor(Xor& x) { bool rhs = x.rhs; size_t i = 0; size_t j = 0; for(size_t size = x.size(); i < size; i++) { uint32_t var = x[i]; if (solver->value(var) != l_Undef) { rhs ^= solver->value(var) == l_True; } else { x[j++] = var; } } x.resize(j); x.rhs = rhs; switch(x.size()) { case 0: solver->ok &= !x.rhs; return false; case 1: { solver->fully_enqueue_this(Lit(x[0], !x.rhs)); return false; } case 2: { solver->add_xor_clause_inter(vars_to_lits(x), x.rhs, true); return false; } default: { return true; } } } bool ClauseCleaner::clean_xor_clauses(vector& xors) { assert(solver->ok); #ifdef VERBOSE_DEBUG cout << "(" << matrix_no << ") Cleaning gauss clauses" << endl; for(Xor& x : xors) { cout << "orig XOR: " << x << endl; } #endif size_t i = 0; size_t j = 0; for(size_t size = xors.size(); i < size; i++) { Xor& x = xors[i]; const bool keep = clean_one_xor(x); if (!solver->ok) { return false; } if (keep) { xors[j++] = x; } } xors.resize(j); #ifdef VERBOSE_DEBUG for(Xor& x : xors) { cout << "cleaned XOR: " << x << endl; } #endif return solver->ok; }