/****************************************** Copyright (c) 2016, Mate Soos Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ***********************************************/ #include "implcache.h" #ifndef TRANSCACHE_H_ #define TRANSCACHE_H_ #include "solver.h" #include "varreplacer.h" #include "varupdatehelper.h" #include "time_mem.h" #include "sqlstats.h" using namespace CMSat; using std::cout; using std::endl; //Make all literals as if propagated only by redundant void ImplCache::makeAllRed() { for(vector::iterator it = implCache.begin(), end = implCache.end() ; it != end ; ++it ) { it->makeAllRed(); } } size_t ImplCache::mem_used() const { double numBytes = 0; for(vector::const_iterator it = implCache.begin(), end = implCache.end() ; it != end ; ++it ) { //1.2 is overhead numBytes += (double)it->lits.capacity()*(double)sizeof(LitExtra)*1.2; } numBytes += implCache.capacity()*sizeof(vector); return numBytes; } void ImplCache::print_stats(const Solver* solver) const { cout << "c --------- Implication Cache Stats Start ----------" << endl; print_statsSort(solver); cout << "c --------- Implication Cache Stats End ----------" << endl; } void ImplCache::print_statsSort(const Solver* solver) const { size_t numHasElems = 0; size_t totalElems = 0; size_t activeLits = 0; for(size_t i = 0; i < implCache.size(); i++) { Lit lit = Lit::toLit(i); if (solver->varData[lit.var()].removed == Removed::none) { activeLits++; totalElems += implCache[i].lits.size(); numHasElems += !implCache[i].lits.empty(); } } print_stats_line( "c lits having cache" , stats_line_percent(numHasElems, activeLits) , "% of decision lits" ); print_stats_line( "c num elems in cache/lit" , stats_line_percent(totalElems, numHasElems) , "extralits" ); } bool ImplCache::clean(Solver* solver, bool* setSomething) { assert(solver->ok); assert(solver->decisionLevel() == 0); vector toEnqueue; double myTime = cpuTime(); uint64_t numUpdated = 0; uint64_t numCleaned = 0; uint64_t numFreed = 0; //Merge in & free memory for (uint32_t var = 0; var < solver->nVars(); var++) { //If replaced, merge it into the one that replaced it if (solver->varData[var].removed == Removed::replaced) { for(int i = 0; i < 2; i++) { const Lit litOrig = Lit(var, i); if (implCache[litOrig.toInt()].lits.empty()) continue; const Lit lit = solver->varReplacer->get_lit_replaced_with(litOrig); //Updated literal must be normal, otherwise, biig problems e.g //implCache is not even large enough, etc. if (solver->varData[lit.var()].removed == Removed::none) { bool taut = implCache.at(lit.toInt()).merge( implCache[litOrig.toInt()].lits , lit_Undef //nothing to add , false //replaced, so 'irred' , lit.var() //exclude the literal itself , solver->seen ); if (taut) { toEnqueue.push_back(lit); (*solver->drat) << lit << fin; } } } } //Free it if (solver->value(var) != l_Undef || solver->varData[var].removed != Removed::none ) { vector tmp1; numFreed += implCache[Lit(var, false).toInt()].lits.capacity(); implCache[Lit(var, false).toInt()].lits.swap(tmp1); vector tmp2; numFreed += implCache[Lit(var, true).toInt()].lits.capacity(); implCache[Lit(var, true).toInt()].lits.swap(tmp2); } } vector& inside = solver->seen; vector& irred = solver->seen2; size_t wsLit = 0; for(vector::iterator trans = implCache.begin(), transEnd = implCache.end() ; trans != transEnd ; trans++, wsLit++ ) { //Stats size_t origSize = trans->lits.size(); size_t newSize = 0; //Update to replaced vars, remove vars already set or eliminated Lit vertLit = Lit::toLit(wsLit); for (vector::iterator end = trans->lits.end(), it=trans->lits.begin(), it2 = trans->lits.begin() ; it != end ; ++it ) { Lit lit = it->getLit(); assert(lit.var() != vertLit.var()); //Remove if value is set if (solver->value(lit.var()) != l_Undef) continue; //Update to its replaced version if (solver->varData[lit.var()].removed == Removed::replaced) { lit = solver->varReplacer->get_lit_replaced_with(lit); //This would be tautological (and incorrect), so skip if (lit.var() == vertLit.var()) continue; numUpdated++; } //Yes, it's possible that the child was not set, but the parent is set //This is because there is a delay between replacement and cache cleaning if (solver->value(lit.var()) != l_Undef) continue; //If updated version is eliminated/decomposed, skip if (solver->varData[lit.var()].removed != Removed::none) continue; //Mark irred irred[lit.toInt()] |= (char)it->getOnlyIrredBin(); //If we have already visited this var, just skip over, but update irred if (inside[lit.toInt()]) { continue; } inside[lit.toInt()] = true; *it2++ = LitExtra(lit, it->getOnlyIrredBin()); newSize++; } trans->lits.resize(newSize); //Now that we have gone through the list, go through once more to: //1) set irred right (above we might have it set later) //2) clear 'inside' //3) clear 'irred' for (vector::iterator it2 = trans->lits.begin(), end2 = trans->lits.end() ;it2 != end2 ; it2++ ) { Lit lit = it2->getLit(); //Clear 'inside' inside[lit.toInt()] = false; //Clear 'irred' const bool nRed = irred[lit.toInt()]; irred[lit.toInt()] = false; //Set non-leartness correctly *it2 = LitExtra(lit, nRed); assert(solver->varData[it2->getLit().var()].removed == Removed::none); assert(solver->value(it2->getLit()) == l_Undef); } numCleaned += origSize-trans->lits.size(); } size_t origTrailDepth = solver->trail_size(); solver->fully_enqueue_these(toEnqueue); if (setSomething) { *setSomething = (solver->trail_size() != origTrailDepth); } const double time_used = cpuTime()-myTime; if (solver->conf.verbosity) { cout << "c [cache] cleaned." << " Updated: " << std::setw(7) << numUpdated/1000 << " K" << " Cleaned: " << std::setw(7) << numCleaned/1000 << " K" << " Freed: " << std::setw(7) << numFreed/1000 << " K" << solver->conf.print_times(time_used) << endl; } if (solver->sqlStats) { solver->sqlStats->time_passed_min( solver , "clean cache" , time_used ); } return solver->okay(); } void ImplCache::handleNewData( vector& val , uint32_t var , Lit lit ) { //Unfortunately, we cannot add the clauses, because that could mess up //the watchlists, which are being traversed by the callers, so we add these //new truths as delayed clauses, and add them at the end vector tmp; //a->b and (-a)->b, so 'b' if (val[lit.var()] == lit.sign()) { delayedClausesToAddNorm.push_back(lit); runStats.bProp++; } else { //a->b, and (-a)->(-b), so equivalent literal tmp.push_back(Lit(var, false)); tmp.push_back(Lit(lit.var(), false)); bool sign = lit.sign(); delayedClausesToAddXor.push_back(std::make_pair(tmp, sign)); runStats.bXProp++; } } bool ImplCache::addDelayedClauses(Solver* solver) { assert(solver->ok); //Add all delayed clauses if (solver->conf.doFindAndReplaceEqLits) { for(vector, bool> > ::const_iterator it = delayedClausesToAddXor.begin(), end = delayedClausesToAddXor.end() ; it != end ; ++it ) { bool OK = true; for(vector::const_iterator it2 = it->first.begin(), end2 = it->first.end() ; it2 != end2 ; it2++ ) { if (solver->varData[it2->var()].removed != Removed::none) { //Var has been eliminated one way or another. Don't add this clause OK = false; break; } } //If any of the variables have been eliminated (possible, if cache is used) //then don't add this clause if (!OK) continue; //Add the clause solver->add_xor_clause_inter(it->first, it->second, true); //Check if this caused UNSAT if (!solver->ok) return false; } } for(vector::const_iterator it = delayedClausesToAddNorm.begin(), end = delayedClausesToAddNorm.end() ; it != end ; ++it ) { //Build unit clause vector tmp(1); tmp[0] = *it; //Add unit clause solver->add_clause_int(tmp); //Check if this caused UNSAT if (!solver->ok) return false; } //Clear all delayedClausesToAddXor.clear(); delayedClausesToAddNorm.clear(); return true; } bool ImplCache::tryBoth(Solver* solver) { assert(solver->ok); assert(solver->decisionLevel() == 0); const size_t origTrailSize = solver->trail_size(); runStats.clear(); runStats.numCalls = 1; //Measuring time & usefulness double myTime = cpuTime(); for (uint32_t var = 0; var < solver->nVars(); var++) { //If value is set or eliminated, skip if (solver->value(var) != l_Undef || solver->varData[var].removed != Removed::none ) { continue; } //Try to do it tryVar(solver, var); //Add all clauses that have been delayed if (!addDelayedClauses(solver)) goto end; } end: const double time_used = cpuTime() - myTime; runStats.zeroDepthAssigns = solver->trail_size() - origTrailSize; runStats.cpu_time = time_used; if (solver->conf.verbosity) { runStats.print_short(solver); } globalStats += runStats; if (solver->sqlStats) { solver->sqlStats->time_passed_min( solver , "cache extractboth" , time_used ); } return solver->ok; } void ImplCache::tryVar( Solver* solver , uint32_t var ) { //Sanity check assert(solver->ok); assert(solver->decisionLevel() == 0); //Convenience vector& seen = solver->seen; vector& val = solver->seen2; Lit lit = Lit(var, false); const vector& cache1 = implCache[lit.toInt()].lits; assert(solver->watches.size() > (lit.toInt())); watch_subarray_const ws1 = solver->watches[lit]; const vector& cache2 = implCache[(~lit).toInt()].lits; watch_subarray_const ws2 = solver->watches[~lit]; //Fill 'seen' and 'val' from cache for (vector::const_iterator it = cache1.begin(), end = cache1.end() ; it != end ; ++it ) { const uint32_t var2 = it->getLit().var(); //A variable that has been really eliminated, skip if (solver->varData[var2].removed != Removed::none) { continue; } seen[it->getLit().var()] = 1; val[it->getLit().var()] = it->getLit().sign(); } //Fill 'seen' and 'val' from watch for (const Watched *it = ws1.begin(), *end = ws1.end() ; it != end ; ++it ) { if (!it->isBin()) continue; const Lit otherLit = it->lit2(); if (!seen[otherLit.var()]) { seen[otherLit.var()] = 1; val[otherLit.var()] = otherLit.sign(); } else if (val[otherLit.var()] != otherLit.sign()) { //(a->b, a->-b) -> so 'a' delayedClausesToAddNorm.push_back(lit); } } //Okay, filled //Try to see if we propagate the same or opposite from the other end //Using cache for (vector::const_iterator it = cache2.begin(), end = cache2.end() ; it != end ; ++it ) { assert(it->getLit().var() != var); const uint32_t var2 = it->getLit().var(); //Only if the other one also contained it if (!seen[var2]) continue; //If var has been removed, skip if (solver->varData[var2].removed != Removed::none) { continue; } handleNewData(val, var, it->getLit()); } //Try to see if we propagate the same or opposite from the other end //Using binary clauses for (const Watched *it = ws2.begin(), *end = ws2.end(); it != end; ++it) { if (!it->isBin()) continue; assert(it->lit2().var() != var); const uint32_t var2 = it->lit2().var(); assert(var2 < solver->nVars()); //Only if the other one also contained it if (!seen[var2]) continue; handleNewData(val, var, it->lit2()); } //Clear 'seen' and 'val' for (vector::const_iterator it = cache1.begin(), end = cache1.end(); it != end; ++it) { seen[it->getLit().var()] = false; val[it->getLit().var()] = false; } for (const Watched *it = ws1.begin(), *end = ws1.end(); it != end; ++it) { if (!it->isBin()) continue; seen[it->lit2().var()] = false; val[it->lit2().var()] = false; } } bool TransCache::merge( const vector& otherLits //Lits to add , const Lit extraLit //Add this, too to the list of lits , const bool red //The step was a redundant-dependent step? , const uint32_t leaveOut //Leave this literal out , vector& seen ) { //Mark every literal that is to be added in 'seen' for (size_t i = 0, size = otherLits.size(); i < size; i++) { const Lit lit = otherLits[i].getLit(); const bool onlyIrred = otherLits[i].getOnlyIrredBin(); seen[lit.toInt()] = 1 + (int)onlyIrred; } bool taut = mergeHelper(extraLit, red, seen); //Whatever rests needs to be added for (size_t i = 0 ,size = otherLits.size(); i < size; i++) { const Lit lit = otherLits[i].getLit(); if (seen[lit.toInt()]) { if (lit.var() != leaveOut) lits.push_back(LitExtra(lit, !red && otherLits[i].getOnlyIrredBin())); seen[lit.toInt()] = 0; } } //Handle extra lit if (extraLit != lit_Undef && seen[extraLit.toInt()]) { if (extraLit.var() != leaveOut) lits.push_back(LitExtra(extraLit, !red)); seen[extraLit.toInt()] = 0; } return taut; } bool TransCache::merge( const vector& otherLits //Lits to add , const Lit extraLit //Add this, too to the list of lits , const bool red //The step was a redundant-dependent step? , const uint32_t leaveOut //Leave this literal out , vector& seen ) { //Mark every literal that is to be added in 'seen' for (size_t i = 0, size = otherLits.size(); i < size; i++) { const Lit lit = otherLits[i]; seen[lit.toInt()] = 1; } bool taut = mergeHelper(extraLit, red, seen); //Whatever rests needs to be added for (size_t i = 0 ,size = otherLits.size(); i < size; i++) { const Lit lit = otherLits[i]; if (seen[lit.toInt()]) { if (lit.var() != leaveOut) lits.push_back(LitExtra(lit, false)); seen[lit.toInt()] = 0; } } //Handle extra lit if (extraLit != lit_Undef && seen[extraLit.toInt()]) { if (extraLit.var() != leaveOut) lits.push_back(LitExtra(extraLit, !red)); seen[extraLit.toInt()] = 0; } return taut; } bool TransCache::mergeHelper( const Lit extraLit //Add this, too to the list of lits , const bool red //The step was a redundant-dependent step? , vector& seen ) { bool taut = false; //Handle extra lit if (extraLit != lit_Undef) seen[extraLit.toInt()] = 1 + (int)!red; //Everything that's already in the cache, set seen[] to zero //Also, if seen[] is 2, but it's marked redundant in the cache //mark it as irred for (size_t i = 0, size = lits.size(); i < size; i++) { if (!red && !lits[i].getOnlyIrredBin() && seen[lits[i].getLit().toInt()] == 2 ) { lits[i].setOnlyIrredBin(); } seen[lits[i].getLit().toInt()] = 0; //Both L and ~L are in, the ancestor is a tautology if (seen[(~(lits[i].getLit())).toInt()]) { taut = true; } } return taut; } //Make all literals as if propagated only by redundant void TransCache::makeAllRed() { for(size_t i = 0; i < lits.size(); i++) { lits[i] = LitExtra(lits[i].getLit(), false); } } void TransCache::updateVars( const std::vector< uint32_t >& outerToInter , const size_t newMaxVars ) { for(size_t i = 0; i < lits.size(); i++) { lits[i] = LitExtra(getUpdatedLit(lits[i].getLit(), outerToInter), lits[i].getOnlyIrredBin()); assert(lits[i].getLit().var() < newMaxVars); } } void ImplCache::updateVars( vector& seen , const std::vector< uint32_t >& outerToInter , const std::vector< uint32_t >& interToOuter2 , const size_t newMaxVar ) { updateBySwap(implCache, seen, interToOuter2); for(size_t i = 0; i < implCache.size(); i++) { implCache[i].updateVars(outerToInter, newMaxVar); } } ImplCache::TryBothStats& ImplCache::TryBothStats::operator+=(const TryBothStats& other) { numCalls += other.numCalls; cpu_time += other.cpu_time; zeroDepthAssigns += other.zeroDepthAssigns; varReplaced += other.varReplaced; bProp += other.bProp; bXProp += other.bXProp; return *this; } void ImplCache::TryBothStats::print_short(Solver* solver) const { cout << "c [bcache] " //<< " set: " << bProp << " 0-depth ass: " << zeroDepthAssigns << " BXprop: " << bXProp << solver->conf.print_times(cpu_time) << endl; } #endif //TRANSCACHE_H_