//===- Thunks.cpp --------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===---------------------------------------------------------------------===// // // This file contains Thunk subclasses. // // A thunk is a small piece of code written after an input section // which is used to jump between "incompatible" functions // such as MIPS PIC and non-PIC or ARM non-Thumb and Thumb functions. // // If a jump target is too far and its address doesn't fit to a // short jump instruction, we need to create a thunk too, but we // haven't supported it yet. // // i386 and x86-64 don't need thunks. // //===---------------------------------------------------------------------===// #include "Thunks.h" #include "Config.h" #include "InputSection.h" #include "OutputSections.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include #include using namespace llvm; using namespace llvm::object; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; namespace { // AArch64 long range Thunks class AArch64ABSLongThunk final : public Thunk { public: AArch64ABSLongThunk(Symbol &dest, int64_t addend) : Thunk(dest, addend) {} uint32_t size() override { return 16; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; }; class AArch64ADRPThunk final : public Thunk { public: AArch64ADRPThunk(Symbol &dest, int64_t addend) : Thunk(dest, addend) {} uint32_t size() override { return 12; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; }; // Base class for ARM thunks. // // An ARM thunk may be either short or long. A short thunk is simply a branch // (B) instruction, and it may be used to call ARM functions when the distance // from the thunk to the target is less than 32MB. Long thunks can branch to any // virtual address and can switch between ARM and Thumb, and they are // implemented in the derived classes. This class tries to create a short thunk // if the target is in range, otherwise it creates a long thunk. class ARMThunk : public Thunk { public: ARMThunk(Symbol &dest, int64_t addend) : Thunk(dest, addend) {} bool getMayUseShortThunk(); uint32_t size() override { return getMayUseShortThunk() ? 4 : sizeLong(); } void writeTo(uint8_t *buf) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; // Returns the size of a long thunk. virtual uint32_t sizeLong() = 0; // Writes a long thunk to Buf. virtual void writeLong(uint8_t *buf) = 0; private: // This field tracks whether all previously considered layouts would allow // this thunk to be short. If we have ever needed a long thunk, we always // create a long thunk, even if the thunk may be short given the current // distance to the target. We do this because transitioning from long to short // can create layout oscillations in certain corner cases which would prevent // the layout from converging. bool mayUseShortThunk = true; }; // Base class for Thumb-2 thunks. // // This class is similar to ARMThunk, but it uses the Thumb-2 B.W instruction // which has a range of 16MB. class ThumbThunk : public Thunk { public: ThumbThunk(Symbol &dest, int64_t addend) : Thunk(dest, addend) { alignment = 2; } bool getMayUseShortThunk(); uint32_t size() override { return getMayUseShortThunk() ? 4 : sizeLong(); } void writeTo(uint8_t *buf) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; // Returns the size of a long thunk. virtual uint32_t sizeLong() = 0; // Writes a long thunk to Buf. virtual void writeLong(uint8_t *buf) = 0; private: // See comment in ARMThunk above. bool mayUseShortThunk = true; }; // Specific ARM Thunk implementations. The naming convention is: // Source State, TargetState, Target Requirement, ABS or PI, Range class ARMV7ABSLongThunk final : public ARMThunk { public: ARMV7ABSLongThunk(Symbol &dest, int64_t addend) : ARMThunk(dest, addend) {} uint32_t sizeLong() override { return 12; } void writeLong(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; }; class ARMV7PILongThunk final : public ARMThunk { public: ARMV7PILongThunk(Symbol &dest, int64_t addend) : ARMThunk(dest, addend) {} uint32_t sizeLong() override { return 16; } void writeLong(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; }; class ThumbV7ABSLongThunk final : public ThumbThunk { public: ThumbV7ABSLongThunk(Symbol &dest, int64_t addend) : ThumbThunk(dest, addend) {} uint32_t sizeLong() override { return 10; } void writeLong(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; }; class ThumbV7PILongThunk final : public ThumbThunk { public: ThumbV7PILongThunk(Symbol &dest, int64_t addend) : ThumbThunk(dest, addend) {} uint32_t sizeLong() override { return 12; } void writeLong(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; }; // Implementations of Thunks for older Arm architectures that do not support // the movt/movw instructions. These thunks require at least Architecture v5 // as used on processors such as the Arm926ej-s. There are no Thumb entry // points as there is no Thumb branch instruction on these architecture that // can result in a thunk class ARMV5ABSLongThunk final : public ARMThunk { public: ARMV5ABSLongThunk(Symbol &dest, int64_t addend) : ARMThunk(dest, addend) {} uint32_t sizeLong() override { return 8; } void writeLong(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; }; class ARMV5PILongThunk final : public ARMThunk { public: ARMV5PILongThunk(Symbol &dest, int64_t addend) : ARMThunk(dest, addend) {} uint32_t sizeLong() override { return 16; } void writeLong(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; }; // Implementations of Thunks for Arm v6-M. Only Thumb instructions are permitted class ThumbV6MABSLongThunk final : public ThumbThunk { public: ThumbV6MABSLongThunk(Symbol &dest, int64_t addend) : ThumbThunk(dest, addend) {} uint32_t sizeLong() override { return 12; } void writeLong(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; }; class ThumbV6MPILongThunk final : public ThumbThunk { public: ThumbV6MPILongThunk(Symbol &dest, int64_t addend) : ThumbThunk(dest, addend) {} uint32_t sizeLong() override { return 16; } void writeLong(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; }; // MIPS LA25 thunk class MipsThunk final : public Thunk { public: MipsThunk(Symbol &dest) : Thunk(dest, 0) {} uint32_t size() override { return 16; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; InputSection *getTargetInputSection() const override; }; // microMIPS R2-R5 LA25 thunk class MicroMipsThunk final : public Thunk { public: MicroMipsThunk(Symbol &dest) : Thunk(dest, 0) {} uint32_t size() override { return 14; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; InputSection *getTargetInputSection() const override; }; // microMIPS R6 LA25 thunk class MicroMipsR6Thunk final : public Thunk { public: MicroMipsR6Thunk(Symbol &dest) : Thunk(dest, 0) {} uint32_t size() override { return 12; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; InputSection *getTargetInputSection() const override; }; class PPC32PltCallStub final : public Thunk { public: // For R_PPC_PLTREL24, Thunk::addend records the addend which will be used to // decide the offsets in the call stub. PPC32PltCallStub(const InputSection &isec, const Relocation &rel, Symbol &dest) : Thunk(dest, rel.addend), file(isec.file) {} uint32_t size() override { return 16; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; private: // Records the call site of the call stub. const InputFile *file; }; class PPC32LongThunk final : public Thunk { public: PPC32LongThunk(Symbol &dest, int64_t addend) : Thunk(dest, addend) {} uint32_t size() override { return config->isPic ? 32 : 16; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; }; // PPC64 Plt call stubs. // Any call site that needs to call through a plt entry needs a call stub in // the .text section. The call stub is responsible for: // 1) Saving the toc-pointer to the stack. // 2) Loading the target functions address from the procedure linkage table into // r12 for use by the target functions global entry point, and into the count // register. // 3) Transferring control to the target function through an indirect branch. class PPC64PltCallStub final : public Thunk { public: PPC64PltCallStub(Symbol &dest) : Thunk(dest, 0) {} uint32_t size() override { return 20; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; }; // PPC64 R2 Save Stub // When the caller requires a valid R2 TOC pointer but the callee does not // require a TOC pointer and the callee cannot guarantee that it doesn't // clobber R2 then we need to save R2. This stub: // 1) Saves the TOC pointer to the stack. // 2) Tail calls the callee. class PPC64R2SaveStub final : public Thunk { public: PPC64R2SaveStub(Symbol &dest, int64_t addend) : Thunk(dest, addend) { alignment = 16; } // To prevent oscillations in layout when moving from short to long thunks // we make sure that once a thunk has been set to long it cannot go back. bool getMayUseShortThunk() { if (!mayUseShortThunk) return false; if (!isInt<26>(computeOffset())) { mayUseShortThunk = false; return false; } return true; } uint32_t size() override { return getMayUseShortThunk() ? 8 : 32; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; private: // Transitioning from long to short can create layout oscillations in // certain corner cases which would prevent the layout from converging. // This is similar to the handling for ARMThunk. bool mayUseShortThunk = true; int64_t computeOffset() const { return destination.getVA() - (getThunkTargetSym()->getVA() + 4); } }; // PPC64 R12 Setup Stub // When a caller that does not maintain a toc-pointer performs a local call to // a callee which requires a toc-pointer then we need this stub to place the // callee's global entry point into r12 without a save of R2. class PPC64R12SetupStub final : public Thunk { public: PPC64R12SetupStub(Symbol &dest) : Thunk(dest, 0) { alignment = 16; } uint32_t size() override { return 32; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; }; // PPC64 PC-relative PLT Stub // When a caller that does not maintain a toc-pointer performs an extern call // then this stub is needed for: // 1) Loading the target functions address from the procedure linkage table into // r12 for use by the target functions global entry point, and into the count // register with pc-relative instructions. // 2) Transferring control to the target function through an indirect branch. class PPC64PCRelPLTStub final : public Thunk { public: PPC64PCRelPLTStub(Symbol &dest) : Thunk(dest, 0) { alignment = 16; } uint32_t size() override { return 32; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; }; // A bl instruction uses a signed 24 bit offset, with an implicit 4 byte // alignment. This gives a possible 26 bits of 'reach'. If the call offset is // larger than that we need to emit a long-branch thunk. The target address // of the callee is stored in a table to be accessed TOC-relative. Since the // call must be local (a non-local call will have a PltCallStub instead) the // table stores the address of the callee's local entry point. For // position-independent code a corresponding relative dynamic relocation is // used. class PPC64LongBranchThunk : public Thunk { public: uint32_t size() override { return 32; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; protected: PPC64LongBranchThunk(Symbol &dest, int64_t addend) : Thunk(dest, addend) {} }; class PPC64PILongBranchThunk final : public PPC64LongBranchThunk { public: PPC64PILongBranchThunk(Symbol &dest, int64_t addend) : PPC64LongBranchThunk(dest, addend) { assert(!dest.isPreemptible); if (Optional index = in.ppc64LongBranchTarget->addEntry(&dest, addend)) { mainPart->relaDyn->addRelativeReloc( target->relativeRel, in.ppc64LongBranchTarget, *index * UINT64_C(8), dest, addend + getPPC64GlobalEntryToLocalEntryOffset(dest.stOther), target->symbolicRel, R_ABS); } } }; class PPC64PDLongBranchThunk final : public PPC64LongBranchThunk { public: PPC64PDLongBranchThunk(Symbol &dest, int64_t addend) : PPC64LongBranchThunk(dest, addend) { in.ppc64LongBranchTarget->addEntry(&dest, addend); } }; // A bl instruction uses a signed 24 bit offset, with an implicit 4 byte // alignment. This gives a possible 26 bits of 'reach'. If the caller and // callee do not use toc and the call offset is larger than 26 bits, // we need to emit a pc-rel based long-branch thunk. The target address of // the callee is computed with a PC-relative offset. class PPC64PCRelLongBranchThunk final : public Thunk { public: PPC64PCRelLongBranchThunk(Symbol &dest, int64_t addend) : Thunk(dest, addend) { alignment = 16; } uint32_t size() override { return 32; } void writeTo(uint8_t *buf) override; void addSymbols(ThunkSection &isec) override; bool isCompatibleWith(const InputSection &isec, const Relocation &rel) const override; }; } // end anonymous namespace Defined *Thunk::addSymbol(StringRef name, uint8_t type, uint64_t value, InputSectionBase §ion) { Defined *d = addSyntheticLocal(name, type, value, /*size=*/0, section); syms.push_back(d); return d; } void Thunk::setOffset(uint64_t newOffset) { for (Defined *d : syms) d->value = d->value - offset + newOffset; offset = newOffset; } // AArch64 long range Thunks static uint64_t getAArch64ThunkDestVA(const Symbol &s, int64_t a) { uint64_t v = s.isInPlt() ? s.getPltVA() : s.getVA(a); return v; } void AArch64ABSLongThunk::writeTo(uint8_t *buf) { const uint8_t data[] = { 0x50, 0x00, 0x00, 0x58, // ldr x16, L0 0x00, 0x02, 0x1f, 0xd6, // br x16 0x00, 0x00, 0x00, 0x00, // L0: .xword S 0x00, 0x00, 0x00, 0x00, }; uint64_t s = getAArch64ThunkDestVA(destination, addend); memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf + 8, R_AARCH64_ABS64, s); } void AArch64ABSLongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__AArch64AbsLongThunk_" + destination.getName()), STT_FUNC, 0, isec); addSymbol("$x", STT_NOTYPE, 0, isec); addSymbol("$d", STT_NOTYPE, 8, isec); } // This Thunk has a maximum range of 4Gb, this is sufficient for all programs // using the small code model, including pc-relative ones. At time of writing // clang and gcc do not support the large code model for position independent // code so it is safe to use this for position independent thunks without // worrying about the destination being more than 4Gb away. void AArch64ADRPThunk::writeTo(uint8_t *buf) { const uint8_t data[] = { 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest R_AARCH64_ADR_PREL_PG_HI21(Dest) 0x10, 0x02, 0x00, 0x91, // add x16, x16, R_AARCH64_ADD_ABS_LO12_NC(Dest) 0x00, 0x02, 0x1f, 0xd6, // br x16 }; uint64_t s = getAArch64ThunkDestVA(destination, addend); uint64_t p = getThunkTargetSym()->getVA(); memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21, getAArch64Page(s) - getAArch64Page(p)); target->relocateNoSym(buf + 4, R_AARCH64_ADD_ABS_LO12_NC, s); } void AArch64ADRPThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__AArch64ADRPThunk_" + destination.getName()), STT_FUNC, 0, isec); addSymbol("$x", STT_NOTYPE, 0, isec); } // ARM Target Thunks static uint64_t getARMThunkDestVA(const Symbol &s) { uint64_t v = s.isInPlt() ? s.getPltVA() : s.getVA(); return SignExtend64<32>(v); } // This function returns true if the target is not Thumb and is within 2^26, and // it has not previously returned false (see comment for mayUseShortThunk). bool ARMThunk::getMayUseShortThunk() { if (!mayUseShortThunk) return false; uint64_t s = getARMThunkDestVA(destination); if (s & 1) { mayUseShortThunk = false; return false; } uint64_t p = getThunkTargetSym()->getVA(); int64_t offset = s - p - 8; mayUseShortThunk = llvm::isInt<26>(offset); return mayUseShortThunk; } void ARMThunk::writeTo(uint8_t *buf) { if (!getMayUseShortThunk()) { writeLong(buf); return; } uint64_t s = getARMThunkDestVA(destination); uint64_t p = getThunkTargetSym()->getVA(); int64_t offset = s - p - 8; const uint8_t data[] = { 0x00, 0x00, 0x00, 0xea, // b S }; memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf, R_ARM_JUMP24, offset); } bool ARMThunk::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { // Thumb branch relocations can't use BLX return rel.type != R_ARM_THM_JUMP19 && rel.type != R_ARM_THM_JUMP24; } // This function returns true if the target is Thumb and is within 2^25, and // it has not previously returned false (see comment for mayUseShortThunk). bool ThumbThunk::getMayUseShortThunk() { if (!mayUseShortThunk) return false; uint64_t s = getARMThunkDestVA(destination); if ((s & 1) == 0) { mayUseShortThunk = false; return false; } uint64_t p = getThunkTargetSym()->getVA() & ~1; int64_t offset = s - p - 4; mayUseShortThunk = llvm::isInt<25>(offset); return mayUseShortThunk; } void ThumbThunk::writeTo(uint8_t *buf) { if (!getMayUseShortThunk()) { writeLong(buf); return; } uint64_t s = getARMThunkDestVA(destination); uint64_t p = getThunkTargetSym()->getVA(); int64_t offset = s - p - 4; const uint8_t data[] = { 0x00, 0xf0, 0x00, 0xb0, // b.w S }; memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf, R_ARM_THM_JUMP24, offset); } bool ThumbThunk::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { // ARM branch relocations can't use BLX return rel.type != R_ARM_JUMP24 && rel.type != R_ARM_PC24 && rel.type != R_ARM_PLT32; } void ARMV7ABSLongThunk::writeLong(uint8_t *buf) { const uint8_t data[] = { 0x00, 0xc0, 0x00, 0xe3, // movw ip,:lower16:S 0x00, 0xc0, 0x40, 0xe3, // movt ip,:upper16:S 0x1c, 0xff, 0x2f, 0xe1, // bx ip }; uint64_t s = getARMThunkDestVA(destination); memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf, R_ARM_MOVW_ABS_NC, s); target->relocateNoSym(buf + 4, R_ARM_MOVT_ABS, s); } void ARMV7ABSLongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__ARMv7ABSLongThunk_" + destination.getName()), STT_FUNC, 0, isec); addSymbol("$a", STT_NOTYPE, 0, isec); } void ThumbV7ABSLongThunk::writeLong(uint8_t *buf) { const uint8_t data[] = { 0x40, 0xf2, 0x00, 0x0c, // movw ip, :lower16:S 0xc0, 0xf2, 0x00, 0x0c, // movt ip, :upper16:S 0x60, 0x47, // bx ip }; uint64_t s = getARMThunkDestVA(destination); memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf, R_ARM_THM_MOVW_ABS_NC, s); target->relocateNoSym(buf + 4, R_ARM_THM_MOVT_ABS, s); } void ThumbV7ABSLongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__Thumbv7ABSLongThunk_" + destination.getName()), STT_FUNC, 1, isec); addSymbol("$t", STT_NOTYPE, 0, isec); } void ARMV7PILongThunk::writeLong(uint8_t *buf) { const uint8_t data[] = { 0xf0, 0xcf, 0x0f, 0xe3, // P: movw ip,:lower16:S - (P + (L1-P) + 8) 0x00, 0xc0, 0x40, 0xe3, // movt ip,:upper16:S - (P + (L1-P) + 8) 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc 0x1c, 0xff, 0x2f, 0xe1, // bx ip }; uint64_t s = getARMThunkDestVA(destination); uint64_t p = getThunkTargetSym()->getVA(); int64_t offset = s - p - 16; memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf, R_ARM_MOVW_PREL_NC, offset); target->relocateNoSym(buf + 4, R_ARM_MOVT_PREL, offset); } void ARMV7PILongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__ARMV7PILongThunk_" + destination.getName()), STT_FUNC, 0, isec); addSymbol("$a", STT_NOTYPE, 0, isec); } void ThumbV7PILongThunk::writeLong(uint8_t *buf) { const uint8_t data[] = { 0x4f, 0xf6, 0xf4, 0x7c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 0xfc, 0x44, // L1: add ip, pc 0x60, 0x47, // bx ip }; uint64_t s = getARMThunkDestVA(destination); uint64_t p = getThunkTargetSym()->getVA() & ~0x1; int64_t offset = s - p - 12; memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf, R_ARM_THM_MOVW_PREL_NC, offset); target->relocateNoSym(buf + 4, R_ARM_THM_MOVT_PREL, offset); } void ThumbV7PILongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__ThumbV7PILongThunk_" + destination.getName()), STT_FUNC, 1, isec); addSymbol("$t", STT_NOTYPE, 0, isec); } void ARMV5ABSLongThunk::writeLong(uint8_t *buf) { const uint8_t data[] = { 0x04, 0xf0, 0x1f, 0xe5, // ldr pc, [pc,#-4] ; L1 0x00, 0x00, 0x00, 0x00, // L1: .word S }; memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf + 4, R_ARM_ABS32, getARMThunkDestVA(destination)); } void ARMV5ABSLongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__ARMv5ABSLongThunk_" + destination.getName()), STT_FUNC, 0, isec); addSymbol("$a", STT_NOTYPE, 0, isec); addSymbol("$d", STT_NOTYPE, 4, isec); } bool ARMV5ABSLongThunk::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { // Thumb branch relocations can't use BLX return rel.type != R_ARM_THM_JUMP19 && rel.type != R_ARM_THM_JUMP24; } void ARMV5PILongThunk::writeLong(uint8_t *buf) { const uint8_t data[] = { 0x04, 0xc0, 0x9f, 0xe5, // P: ldr ip, [pc,#4] ; L2 0x0c, 0xc0, 0x8f, 0xe0, // L1: add ip, pc, ip 0x1c, 0xff, 0x2f, 0xe1, // bx ip 0x00, 0x00, 0x00, 0x00, // L2: .word S - (P + (L1 - P) + 8) }; uint64_t s = getARMThunkDestVA(destination); uint64_t p = getThunkTargetSym()->getVA() & ~0x1; memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf + 12, R_ARM_REL32, s - p - 12); } void ARMV5PILongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__ARMV5PILongThunk_" + destination.getName()), STT_FUNC, 0, isec); addSymbol("$a", STT_NOTYPE, 0, isec); addSymbol("$d", STT_NOTYPE, 12, isec); } bool ARMV5PILongThunk::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { // Thumb branch relocations can't use BLX return rel.type != R_ARM_THM_JUMP19 && rel.type != R_ARM_THM_JUMP24; } void ThumbV6MABSLongThunk::writeLong(uint8_t *buf) { // Most Thumb instructions cannot access the high registers r8 - r15. As the // only register we can corrupt is r12 we must instead spill a low register // to the stack to use as a scratch register. We push r1 even though we // don't need to get some space to use for the return address. const uint8_t data[] = { 0x03, 0xb4, // push {r0, r1} ; Obtain scratch registers 0x01, 0x48, // ldr r0, [pc, #4] ; L1 0x01, 0x90, // str r0, [sp, #4] ; SP + 4 = S 0x01, 0xbd, // pop {r0, pc} ; restore r0 and branch to dest 0x00, 0x00, 0x00, 0x00 // L1: .word S }; uint64_t s = getARMThunkDestVA(destination); memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf + 8, R_ARM_ABS32, s); } void ThumbV6MABSLongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__Thumbv6MABSLongThunk_" + destination.getName()), STT_FUNC, 1, isec); addSymbol("$t", STT_NOTYPE, 0, isec); addSymbol("$d", STT_NOTYPE, 8, isec); } void ThumbV6MPILongThunk::writeLong(uint8_t *buf) { // Most Thumb instructions cannot access the high registers r8 - r15. As the // only register we can corrupt is ip (r12) we must instead spill a low // register to the stack to use as a scratch register. const uint8_t data[] = { 0x01, 0xb4, // P: push {r0} ; Obtain scratch register 0x02, 0x48, // ldr r0, [pc, #8] ; L2 0x84, 0x46, // mov ip, r0 ; high to low register 0x01, 0xbc, // pop {r0} ; restore scratch register 0xe7, 0x44, // L1: add pc, ip ; transfer control 0xc0, 0x46, // nop ; pad to 4-byte boundary 0x00, 0x00, 0x00, 0x00, // L2: .word S - (P + (L1 - P) + 4) }; uint64_t s = getARMThunkDestVA(destination); uint64_t p = getThunkTargetSym()->getVA() & ~0x1; memcpy(buf, data, sizeof(data)); target->relocateNoSym(buf + 12, R_ARM_REL32, s - p - 12); } void ThumbV6MPILongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__Thumbv6MPILongThunk_" + destination.getName()), STT_FUNC, 1, isec); addSymbol("$t", STT_NOTYPE, 0, isec); addSymbol("$d", STT_NOTYPE, 12, isec); } // Write MIPS LA25 thunk code to call PIC function from the non-PIC one. void MipsThunk::writeTo(uint8_t *buf) { uint64_t s = destination.getVA(); write32(buf, 0x3c190000); // lui $25, %hi(func) write32(buf + 4, 0x08000000 | (s >> 2)); // j func write32(buf + 8, 0x27390000); // addiu $25, $25, %lo(func) write32(buf + 12, 0x00000000); // nop target->relocateNoSym(buf, R_MIPS_HI16, s); target->relocateNoSym(buf + 8, R_MIPS_LO16, s); } void MipsThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__LA25Thunk_" + destination.getName()), STT_FUNC, 0, isec); } InputSection *MipsThunk::getTargetInputSection() const { auto &dr = cast(destination); return dyn_cast(dr.section); } // Write microMIPS R2-R5 LA25 thunk code // to call PIC function from the non-PIC one. void MicroMipsThunk::writeTo(uint8_t *buf) { uint64_t s = destination.getVA(); write16(buf, 0x41b9); // lui $25, %hi(func) write16(buf + 4, 0xd400); // j func write16(buf + 8, 0x3339); // addiu $25, $25, %lo(func) write16(buf + 12, 0x0c00); // nop target->relocateNoSym(buf, R_MICROMIPS_HI16, s); target->relocateNoSym(buf + 4, R_MICROMIPS_26_S1, s); target->relocateNoSym(buf + 8, R_MICROMIPS_LO16, s); } void MicroMipsThunk::addSymbols(ThunkSection &isec) { Defined *d = addSymbol( saver.save("__microLA25Thunk_" + destination.getName()), STT_FUNC, 0, isec); d->stOther |= STO_MIPS_MICROMIPS; } InputSection *MicroMipsThunk::getTargetInputSection() const { auto &dr = cast(destination); return dyn_cast(dr.section); } // Write microMIPS R6 LA25 thunk code // to call PIC function from the non-PIC one. void MicroMipsR6Thunk::writeTo(uint8_t *buf) { uint64_t s = destination.getVA(); uint64_t p = getThunkTargetSym()->getVA(); write16(buf, 0x1320); // lui $25, %hi(func) write16(buf + 4, 0x3339); // addiu $25, $25, %lo(func) write16(buf + 8, 0x9400); // bc func target->relocateNoSym(buf, R_MICROMIPS_HI16, s); target->relocateNoSym(buf + 4, R_MICROMIPS_LO16, s); target->relocateNoSym(buf + 8, R_MICROMIPS_PC26_S1, s - p - 12); } void MicroMipsR6Thunk::addSymbols(ThunkSection &isec) { Defined *d = addSymbol( saver.save("__microLA25Thunk_" + destination.getName()), STT_FUNC, 0, isec); d->stOther |= STO_MIPS_MICROMIPS; } InputSection *MicroMipsR6Thunk::getTargetInputSection() const { auto &dr = cast(destination); return dyn_cast(dr.section); } void elf::writePPC32PltCallStub(uint8_t *buf, uint64_t gotPltVA, const InputFile *file, int64_t addend) { if (!config->isPic) { write32(buf + 0, 0x3d600000 | (gotPltVA + 0x8000) >> 16); // lis r11,ha write32(buf + 4, 0x816b0000 | (uint16_t)gotPltVA); // lwz r11,l(r11) write32(buf + 8, 0x7d6903a6); // mtctr r11 write32(buf + 12, 0x4e800420); // bctr return; } uint32_t offset; if (addend >= 0x8000) { // The stub loads an address relative to r30 (.got2+Addend). Addend is // almost always 0x8000. The address of .got2 is different in another object // file, so a stub cannot be shared. offset = gotPltVA - (in.ppc32Got2->getParent()->getVA() + file->ppc32Got2OutSecOff + addend); } else { // The stub loads an address relative to _GLOBAL_OFFSET_TABLE_ (which is // currently the address of .got). offset = gotPltVA - in.got->getVA(); } uint16_t ha = (offset + 0x8000) >> 16, l = (uint16_t)offset; if (ha == 0) { write32(buf + 0, 0x817e0000 | l); // lwz r11,l(r30) write32(buf + 4, 0x7d6903a6); // mtctr r11 write32(buf + 8, 0x4e800420); // bctr write32(buf + 12, 0x60000000); // nop } else { write32(buf + 0, 0x3d7e0000 | ha); // addis r11,r30,ha write32(buf + 4, 0x816b0000 | l); // lwz r11,l(r11) write32(buf + 8, 0x7d6903a6); // mtctr r11 write32(buf + 12, 0x4e800420); // bctr } } void PPC32PltCallStub::writeTo(uint8_t *buf) { writePPC32PltCallStub(buf, destination.getGotPltVA(), file, addend); } void PPC32PltCallStub::addSymbols(ThunkSection &isec) { std::string buf; raw_string_ostream os(buf); os << format_hex_no_prefix(addend, 8); if (!config->isPic) os << ".plt_call32."; else if (addend >= 0x8000) os << ".got2.plt_pic32."; else os << ".plt_pic32."; os << destination.getName(); addSymbol(saver.save(os.str()), STT_FUNC, 0, isec); } bool PPC32PltCallStub::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { return !config->isPic || (isec.file == file && rel.addend == addend); } void PPC32LongThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__LongThunk_" + destination.getName()), STT_FUNC, 0, isec); } void PPC32LongThunk::writeTo(uint8_t *buf) { auto ha = [](uint32_t v) -> uint16_t { return (v + 0x8000) >> 16; }; auto lo = [](uint32_t v) -> uint16_t { return v; }; uint32_t d = destination.getVA(addend); if (config->isPic) { uint32_t off = d - (getThunkTargetSym()->getVA() + 8); write32(buf + 0, 0x7c0802a6); // mflr r12,0 write32(buf + 4, 0x429f0005); // bcl r20,r31,.+4 write32(buf + 8, 0x7d8802a6); // mtctr r12 write32(buf + 12, 0x3d8c0000 | ha(off)); // addis r12,r12,off@ha write32(buf + 16, 0x398c0000 | lo(off)); // addi r12,r12,off@l write32(buf + 20, 0x7c0803a6); // mtlr r0 buf += 24; } else { write32(buf + 0, 0x3d800000 | ha(d)); // lis r12,d@ha write32(buf + 4, 0x398c0000 | lo(d)); // addi r12,r12,d@l buf += 8; } write32(buf + 0, 0x7d8903a6); // mtctr r12 write32(buf + 4, 0x4e800420); // bctr } void elf::writePPC64LoadAndBranch(uint8_t *buf, int64_t offset) { uint16_t offHa = (offset + 0x8000) >> 16; uint16_t offLo = offset & 0xffff; write32(buf + 0, 0x3d820000 | offHa); // addis r12, r2, OffHa write32(buf + 4, 0xe98c0000 | offLo); // ld r12, OffLo(r12) write32(buf + 8, 0x7d8903a6); // mtctr r12 write32(buf + 12, 0x4e800420); // bctr } void PPC64PltCallStub::writeTo(uint8_t *buf) { int64_t offset = destination.getGotPltVA() - getPPC64TocBase(); // Save the TOC pointer to the save-slot reserved in the call frame. write32(buf + 0, 0xf8410018); // std r2,24(r1) writePPC64LoadAndBranch(buf + 4, offset); } void PPC64PltCallStub::addSymbols(ThunkSection &isec) { Defined *s = addSymbol(saver.save("__plt_" + destination.getName()), STT_FUNC, 0, isec); s->needsTocRestore = true; s->file = destination.file; } bool PPC64PltCallStub::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { return rel.type == R_PPC64_REL24 || rel.type == R_PPC64_REL14; } void PPC64R2SaveStub::writeTo(uint8_t *buf) { const int64_t offset = computeOffset(); write32(buf + 0, 0xf8410018); // std r2,24(r1) // The branch offset needs to fit in 26 bits. if (getMayUseShortThunk()) { write32(buf + 4, 0x48000000 | (offset & 0x03fffffc)); // b } else if (isInt<34>(offset)) { int nextInstOffset; if (!config->Power10Stub) { uint64_t tocOffset = destination.getVA() - getPPC64TocBase(); if (tocOffset >> 16 > 0) { const uint64_t addi = ADDI_R12_TO_R12_NO_DISP | (tocOffset & 0xffff); const uint64_t addis = ADDIS_R12_TO_R2_NO_DISP | ((tocOffset >> 16) & 0xffff); write32(buf + 4, addis); // addis r12, r2 , top of offset write32(buf + 8, addi); // addi r12, r12, bottom of offset nextInstOffset = 12; } else { const uint64_t addi = ADDI_R12_TO_R2_NO_DISP | (tocOffset & 0xffff); write32(buf + 4, addi); // addi r12, r2, offset nextInstOffset = 8; } } else { const uint64_t paddi = PADDI_R12_NO_DISP | (((offset >> 16) & 0x3ffff) << 32) | (offset & 0xffff); writePrefixedInstruction(buf + 4, paddi); // paddi r12, 0, func@pcrel, 1 nextInstOffset = 12; } write32(buf + nextInstOffset, MTCTR_R12); // mtctr r12 write32(buf + nextInstOffset + 4, BCTR); // bctr } else { in.ppc64LongBranchTarget->addEntry(&destination, addend); const int64_t offsetFromTOC = in.ppc64LongBranchTarget->getEntryVA(&destination, addend) - getPPC64TocBase(); writePPC64LoadAndBranch(buf + 4, offsetFromTOC); } } void PPC64R2SaveStub::addSymbols(ThunkSection &isec) { Defined *s = addSymbol(saver.save("__toc_save_" + destination.getName()), STT_FUNC, 0, isec); s->needsTocRestore = true; } bool PPC64R2SaveStub::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { return rel.type == R_PPC64_REL24 || rel.type == R_PPC64_REL14; } void PPC64R12SetupStub::writeTo(uint8_t *buf) { int64_t offset = destination.getVA() - getThunkTargetSym()->getVA(); if (!isInt<34>(offset)) reportRangeError(buf, offset, 34, destination, "R12 setup stub offset"); int nextInstOffset; if (!config->Power10Stub) { uint32_t off = destination.getVA(addend) - getThunkTargetSym()->getVA() - 8; write32(buf + 0, 0x7c0802a6); // mflr r12 write32(buf + 4, 0x429f0005); // bcl 20,31,.+4 write32(buf + 8, 0x7d6802a6); // mflr r11 write32(buf + 12, 0x7d8803a6); // mtlr r12 write32(buf + 16, 0x3d8b0000 | computeHiBits(off));// addis r12,r11,off@ha write32(buf + 20, 0x398c0000 | (off & 0xffff)); // addi r12,r12,off@l nextInstOffset = 24; } else { uint64_t paddi = PADDI_R12_NO_DISP | (((offset >> 16) & 0x3ffff) << 32) | (offset & 0xffff); writePrefixedInstruction(buf + 0, paddi); // paddi r12, 0, func@pcrel, 1 nextInstOffset = 8; } write32(buf + nextInstOffset, MTCTR_R12); // mtctr r12 write32(buf + nextInstOffset + 4, BCTR); // bctr } void PPC64R12SetupStub::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__gep_setup_" + destination.getName()), STT_FUNC, 0, isec); } bool PPC64R12SetupStub::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { return rel.type == R_PPC64_REL24_NOTOC; } void PPC64PCRelPLTStub::writeTo(uint8_t *buf) { int nextInstOffset = 0; int64_t offset = destination.getGotPltVA() - getThunkTargetSym()->getVA(); if (config->Power10Stub) { if (!isInt<34>(offset)) reportRangeError(buf, offset, 34, destination, "PC-relative PLT stub offset"); const uint64_t pld = PLD_R12_NO_DISP | (((offset >> 16) & 0x3ffff) << 32) | (offset & 0xffff); writePrefixedInstruction(buf + 0, pld); // pld r12, func@plt@pcrel nextInstOffset = 8; } else { uint32_t off = destination.getVA(addend) - getThunkTargetSym()->getVA() - 8; write32(buf + 0, 0x7c0802a6); // mflr r12 write32(buf + 4, 0x429f0005); // bcl 20,31,.+4 write32(buf + 8, 0x7d6802a6); // mflr r11 write32(buf + 12, 0x7d8803a6); // mtlr r12 write32(buf + 16, 0x3d8b0000 | computeHiBits(off)); // addis r12,r11,off@ha write32(buf + 20, 0x398c0000 | (off & 0xffff)); // addi r12,r12,off@l nextInstOffset = 24; } write32(buf + nextInstOffset, MTCTR_R12); // mtctr r12 write32(buf + nextInstOffset + 4, BCTR); // bctr } void PPC64PCRelPLTStub::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__plt_pcrel_" + destination.getName()), STT_FUNC, 0, isec); } bool PPC64PCRelPLTStub::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { return rel.type == R_PPC64_REL24_NOTOC; } void PPC64LongBranchThunk::writeTo(uint8_t *buf) { int64_t offset = in.ppc64LongBranchTarget->getEntryVA(&destination, addend) - getPPC64TocBase(); writePPC64LoadAndBranch(buf, offset); } void PPC64LongBranchThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__long_branch_" + destination.getName()), STT_FUNC, 0, isec); } bool PPC64LongBranchThunk::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { return rel.type == R_PPC64_REL24 || rel.type == R_PPC64_REL14; } void PPC64PCRelLongBranchThunk::writeTo(uint8_t *buf) { int64_t offset = destination.getVA() - getThunkTargetSym()->getVA(); if (!isInt<34>(offset)) reportRangeError(buf, offset, 34, destination, "PC-relative long branch stub offset"); int nextInstOffset; if (!config->Power10Stub) { uint32_t off = destination.getVA(addend) - getThunkTargetSym()->getVA() - 8; write32(buf + 0, 0x7c0802a6); // mflr r12 write32(buf + 4, 0x429f0005); // bcl 20,31,.+4 write32(buf + 8, 0x7d6802a6); // mflr r11 write32(buf + 12, 0x7d8803a6); // mtlr r12 write32(buf + 16, 0x3d8b0000 | computeHiBits(off)); // addis r12,r11,off@ha write32(buf + 20, 0x398c0000 | (off & 0xffff)); // addi r12,r12,off@l nextInstOffset = 24; } else { uint64_t paddi = PADDI_R12_NO_DISP | (((offset >> 16) & 0x3ffff) << 32) | (offset & 0xffff); writePrefixedInstruction(buf + 0, paddi); // paddi r12, 0, func@pcrel, 1 nextInstOffset = 8; } write32(buf + nextInstOffset, MTCTR_R12); // mtctr r12 write32(buf + nextInstOffset + 4, BCTR); // bctr } void PPC64PCRelLongBranchThunk::addSymbols(ThunkSection &isec) { addSymbol(saver.save("__long_branch_pcrel_" + destination.getName()), STT_FUNC, 0, isec); } bool PPC64PCRelLongBranchThunk::isCompatibleWith(const InputSection &isec, const Relocation &rel) const { return rel.type == R_PPC64_REL24_NOTOC; } Thunk::Thunk(Symbol &d, int64_t a) : destination(d), addend(a), offset(0) {} Thunk::~Thunk() = default; static Thunk *addThunkAArch64(RelType type, Symbol &s, int64_t a) { if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && type != R_AARCH64_PLT32) fatal("unrecognized relocation type"); if (config->picThunk) return make(s, a); return make(s, a); } // Creates a thunk for Thumb-ARM interworking. // Arm Architectures v5 and v6 do not support Thumb2 technology. This means // - MOVT and MOVW instructions cannot be used // - Only Thumb relocation that can generate a Thunk is a BL, this can always // be transformed into a BLX static Thunk *addThunkPreArmv7(RelType reloc, Symbol &s, int64_t a) { switch (reloc) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_JUMP24: case R_ARM_CALL: case R_ARM_THM_CALL: if (config->picThunk) return make(s, a); return make(s, a); } fatal("relocation " + toString(reloc) + " to " + toString(s) + " not supported for Armv5 or Armv6 targets"); } // Create a thunk for Thumb long branch on V6-M. // Arm Architecture v6-M only supports Thumb instructions. This means // - MOVT and MOVW instructions cannot be used. // - Only a limited number of instructions can access registers r8 and above // - No interworking support is needed (all Thumb). static Thunk *addThunkV6M(RelType reloc, Symbol &s, int64_t a) { switch (reloc) { case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: case R_ARM_THM_CALL: if (config->isPic) return make(s, a); return make(s, a); } fatal("relocation " + toString(reloc) + " to " + toString(s) + " not supported for Armv6-M targets"); } // Creates a thunk for Thumb-ARM interworking or branch range extension. static Thunk *addThunkArm(RelType reloc, Symbol &s, int64_t a) { // Decide which Thunk is needed based on: // Available instruction set // - An Arm Thunk can only be used if Arm state is available. // - A Thumb Thunk can only be used if Thumb state is available. // - Can only use a Thunk if it uses instructions that the Target supports. // Relocation is branch or branch and link // - Branch instructions cannot change state, can only select Thunk that // starts in the same state as the caller. // - Branch and link relocations can change state, can select Thunks from // either Arm or Thumb. // Position independent Thunks if we require position independent code. // Handle architectures that have restrictions on the instructions that they // can use in Thunks. The flags below are set by reading the BuildAttributes // of the input objects. InputFiles.cpp contains the mapping from ARM // architecture to flag. if (!config->armHasMovtMovw) { if (!config->armJ1J2BranchEncoding) return addThunkPreArmv7(reloc, s, a); return addThunkV6M(reloc, s, a); } switch (reloc) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_JUMP24: case R_ARM_CALL: if (config->picThunk) return make(s, a); return make(s, a); case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: case R_ARM_THM_CALL: if (config->picThunk) return make(s, a); return make(s, a); } fatal("unrecognized relocation type"); } static Thunk *addThunkMips(RelType type, Symbol &s) { if ((s.stOther & STO_MIPS_MICROMIPS) && isMipsR6()) return make(s); if (s.stOther & STO_MIPS_MICROMIPS) return make(s); return make(s); } static Thunk *addThunkPPC32(const InputSection &isec, const Relocation &rel, Symbol &s) { assert((rel.type == R_PPC_LOCAL24PC || rel.type == R_PPC_REL24 || rel.type == R_PPC_PLTREL24) && "unexpected relocation type for thunk"); if (s.isInPlt()) return make(isec, rel, s); return make(s, rel.addend); } static Thunk *addThunkPPC64(RelType type, Symbol &s, int64_t a) { assert((type == R_PPC64_REL14 || type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) && "unexpected relocation type for thunk"); if (s.isInPlt()) return type == R_PPC64_REL24_NOTOC ? (Thunk *)make(s) : (Thunk *)make(s); // This check looks at the st_other bits of the callee. If the value is 1 // then the callee clobbers the TOC and we need an R2 save stub when RelType // is R_PPC64_REL14 or R_PPC64_REL24. if ((type == R_PPC64_REL14 || type == R_PPC64_REL24) && (s.stOther >> 5) == 1) return make(s, a); if (type == R_PPC64_REL24_NOTOC) return (s.stOther >> 5) > 1 ? (Thunk *)make(s) : (Thunk *)make(s, a); if (config->picThunk) return make(s, a); return make(s, a); } Thunk *elf::addThunk(const InputSection &isec, Relocation &rel) { Symbol &s = *rel.sym; int64_t a = rel.addend; if (config->emachine == EM_AARCH64) return addThunkAArch64(rel.type, s, a); if (config->emachine == EM_ARM) return addThunkArm(rel.type, s, a); if (config->emachine == EM_MIPS) return addThunkMips(rel.type, s); if (config->emachine == EM_PPC) return addThunkPPC32(isec, rel, s); if (config->emachine == EM_PPC64) return addThunkPPC64(rel.type, s, a); llvm_unreachable("add Thunk only supported for ARM, Mips and PowerPC"); }