// -*- mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*- /* * 2010-2012 Bob Jenkins (code in public domain) * (c) 2013 Vladimír Štill * * Based on http://burtleburtle.net/bob/c/SpookyV2.cpp */ /* Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include // pair #include // tie #ifdef _MSC_VER # define INLINE __forceinline typedef unsigned __int64 uint64; typedef unsigned __int32 uint32; typedef unsigned __int16 uint16; typedef unsigned __int8 uint8; #else # include # define INLINE inline typedef uint64_t uint64; typedef uint32_t uint32; typedef uint16_t uint16; typedef uint8_t uint8; #endif #include #define ALLOW_UNALIGNED_READS 1 #ifndef BRICK_HASH_H #define BRICK_HASH_H namespace brick { namespace hash { typedef uint64_t hash64_t; typedef std::pair< hash64_t, hash64_t > hash128_t; namespace jenkins { // // SpookyHash: a 128-bit noncryptographic hash function // By Bob Jenkins, public domain // Oct 31 2010: alpha, framework + SpookyHash::Mix appears right // Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right // Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas // Feb 2 2012: production, same bits as beta // Feb 5 2012: adjusted definitions of uint* to be more portable // Mar 30 2012: 3 bytes/cycle, not 4. Alpha was 4 but wasn't thorough enough. // August 5 2012: SpookyV2 (different results) // // Up to 3 bytes/cycle for long messages. Reasonably fast for short messages. // All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit. // // This was developed for and tested on 64-bit x86-compatible processors. // It assumes the processor is little-endian. There is a macro // controlling whether unaligned reads are allowed (by default they are). // This should be an equally good hash on big-endian machines, but it will // compute different results on them than on little-endian machines. // // Google's CityHash has similar specs to SpookyHash, and CityHash is faster // on new Intel boxes. MD4 and MD5 also have similar specs, but they are orders // of magnitude slower. CRCs are two or more times slower, but unlike // SpookyHash, they have nice math for combining the CRCs of pieces to form // the CRCs of wholes. There are also cryptographic hashes, but those are even // slower than MD5. // // Modifications for brick-hash.h: // - merged into one file // - pairs are used instead of output parameters // - some functions were marked explicitly for inlining with gcc attribete // as they are considered too long otherwise class SpookyHash { public: // // SpookyHash: hash a single message in one call, produce 128-bit output // static INLINE std::pair< uint64, uint64 > Hash128( const void *message, // message to hash size_t length, // length of message in bytes uint64 seed1, // in/out: in seed 1, out hash value 1 uint64 seed2) // in/out: in seed 2, out hash value 2 { if (length < sc_bufSize) { return Short(message, length, seed1, seed2); } uint64 h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11; uint64 buf[sc_numVars]; uint64 *end; union { const uint8 *p8; uint64 *p64; size_t i; } u; size_t remainder; h0=h3=h6=h9 = seed1; h1=h4=h7=h10 = seed2; h2=h5=h8=h11 = sc_const; u.p8 = reinterpret_cast< const uint8 * >( message ); end = u.p64 + (length/sc_blockSize)*sc_numVars; // handle all whole sc_blockSize blocks of bytes if (ALLOW_UNALIGNED_READS || ((u.i & 0x7) == 0)) { while (u.p64 < end) { Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); u.p64 += sc_numVars; } } else { while (u.p64 < end) { memcpy(buf, u.p64, sc_blockSize); Mix(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); u.p64 += sc_numVars; } } // handle the last partial block of sc_blockSize bytes remainder = (length - (reinterpret_cast< const uint8 *>(end)-reinterpret_cast< const uint8 * >(message))); memcpy(buf, end, remainder); memset( reinterpret_cast< uint8 * >( buf )+remainder, 0, sc_blockSize-remainder); reinterpret_cast< uint8 * >( buf )[sc_blockSize-1] = remainder; // do some final mixing End(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); return std::make_pair( h0, h1 ); } // // Hash64: hash a single message in one call, return 64-bit output // static INLINE uint64 Hash64( const void *message, // message to hash size_t length, // length of message in bytes uint64 seed) // seed { return Hash128(message, length, seed, seed).first; } // // Hash32: hash a single message in one call, produce 32-bit output // static INLINE uint32 Hash32( const void *message, // message to hash size_t length, // length of message in bytes uint32 seed) // seed { return uint32( Hash128(message, length, seed, seed).first ); } // // Init: initialize the context of a SpookyHash // INLINE void Init( uint64 seed1, // any 64-bit value will do, including 0 uint64 seed2) // different seeds produce independent hashes { m_length = 0; m_remainder = 0; m_state[0] = seed1; m_state[1] = seed2; } // // Update: add a piece of a message to a SpookyHash state // INLINE void Update( const void *message, // message fragment size_t length) // length of message fragment in bytes { uint64 h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11; size_t newLength = length + m_remainder; uint8 remainder; union { const uint8 *p8; uint64 *p64; size_t i; } u; const uint64 *end; // Is this message fragment too short? If it is, stuff it away. if (newLength < sc_bufSize) { memcpy(&reinterpret_cast< uint8 * >( m_data )[m_remainder], message, length); m_length = length + m_length; m_remainder = uint8( newLength ); return; } // init the variables if (m_length < sc_bufSize) { h0=h3=h6=h9 = m_state[0]; h1=h4=h7=h10 = m_state[1]; h2=h5=h8=h11 = sc_const; } else { h0 = m_state[0]; h1 = m_state[1]; h2 = m_state[2]; h3 = m_state[3]; h4 = m_state[4]; h5 = m_state[5]; h6 = m_state[6]; h7 = m_state[7]; h8 = m_state[8]; h9 = m_state[9]; h10 = m_state[10]; h11 = m_state[11]; } m_length = length + m_length; // if we've got anything stuffed away, use it now if (m_remainder) { uint8 prefix = sc_bufSize-m_remainder; memcpy(&(reinterpret_cast< uint8 * >( m_data )[m_remainder]), message, prefix); u.p64 = m_data; Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); Mix(&u.p64[sc_numVars], h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); u.p8 = reinterpret_cast< const uint8 * >( message ) + prefix; length -= prefix; } else { u.p8 = reinterpret_cast< const uint8 * >( message ); } // handle all whole blocks of sc_blockSize bytes end = u.p64 + (length/sc_blockSize)*sc_numVars; remainder = uint8(length-(reinterpret_cast< const uint8 * >( end ) - u.p8)); if (ALLOW_UNALIGNED_READS || (u.i & 0x7) == 0) { while (u.p64 < end) { Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); u.p64 += sc_numVars; } } else { while (u.p64 < end) { memcpy(m_data, u.p8, sc_blockSize); Mix(m_data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); u.p64 += sc_numVars; } } // stuff away the last few bytes m_remainder = remainder; memcpy(m_data, end, remainder); // stuff away the variables m_state[0] = h0; m_state[1] = h1; m_state[2] = h2; m_state[3] = h3; m_state[4] = h4; m_state[5] = h5; m_state[6] = h6; m_state[7] = h7; m_state[8] = h8; m_state[9] = h9; m_state[10] = h10; m_state[11] = h11; } // // Final: compute the hash for the current SpookyHash state // // This does not modify the state; you can keep updating it afterward // // The result is the same as if SpookyHash() had been called with // all the pieces concatenated into one message. // INLINE std::pair< uint64, uint64 > Final() { // init the variables if (m_length < sc_bufSize) { return Short( m_data, m_length, m_state[0], m_state[1]); } uint64 *data = reinterpret_cast< uint64 * >( m_data ); uint8 remainder = m_remainder; uint64 h0 = m_state[0]; uint64 h1 = m_state[1]; uint64 h2 = m_state[2]; uint64 h3 = m_state[3]; uint64 h4 = m_state[4]; uint64 h5 = m_state[5]; uint64 h6 = m_state[6]; uint64 h7 = m_state[7]; uint64 h8 = m_state[8]; uint64 h9 = m_state[9]; uint64 h10 = m_state[10]; uint64 h11 = m_state[11]; if (remainder >= sc_blockSize) { // m_data can contain two blocks; handle any whole first block Mix(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); data += sc_numVars; remainder -= sc_blockSize; } // mix in the last partial block, and the length mod sc_blockSize memset(&reinterpret_cast< uint8 * >( data )[remainder], 0, (sc_blockSize-remainder)); reinterpret_cast< uint8 * >( data )[sc_blockSize-1] = remainder; // do some final mixing End(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); return std::make_pair( h0, h1 ); } // // left rotate a 64-bit value by k bytes // static INLINE constexpr uint64 Rot64(uint64 x, int k) __attribute__((always_inline)) { return (x << k) | (x >> (64 - k)); } // // This is used if the input is 96 bytes long or longer. // // The internal state is fully overwritten every 96 bytes. // Every input bit appears to cause at least 128 bits of entropy // before 96 other bytes are combined, when run forward or backward // For every input bit, // Two inputs differing in just that input bit // Where "differ" means xor or subtraction // And the base value is random // When run forward or backwards one Mix // I tried 3 pairs of each; they all differed by at least 212 bits. // static INLINE void Mix( const uint64 *data, uint64 &s0, uint64 &s1, uint64 &s2, uint64 &s3, uint64 &s4, uint64 &s5, uint64 &s6, uint64 &s7, uint64 &s8, uint64 &s9, uint64 &s10,uint64 &s11) __attribute__((always_inline)) { s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0,11); s11 += s1; s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1,32); s0 += s2; s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2,43); s1 += s3; s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3,31); s2 += s4; s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4,17); s3 += s5; s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5,28); s4 += s6; s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6,39); s5 += s7; s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7,57); s6 += s8; s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8,55); s7 += s9; s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9,54); s8 += s10; s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10,22); s9 += s11; s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11,46); s10 += s0; } // // Mix all 12 inputs together so that h0, h1 are a hash of them all. // // For two inputs differing in just the input bits // Where "differ" means xor or subtraction // And the base value is random, or a counting value starting at that bit // The final result will have each bit of h0, h1 flip // For every input bit, // with probability 50 +- .3% // For every pair of input bits, // with probability 50 +- 3% // // This does not rely on the last Mix() call having already mixed some. // Two iterations was almost good enough for a 64-bit result, but a // 128-bit result is reported, so End() does three iterations. // static INLINE void EndPartial( uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3, uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7, uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11) __attribute__((always_inline)) { h11+= h1; h2 ^= h11; h1 = Rot64(h1,44); h0 += h2; h3 ^= h0; h2 = Rot64(h2,15); h1 += h3; h4 ^= h1; h3 = Rot64(h3,34); h2 += h4; h5 ^= h2; h4 = Rot64(h4,21); h3 += h5; h6 ^= h3; h5 = Rot64(h5,38); h4 += h6; h7 ^= h4; h6 = Rot64(h6,33); h5 += h7; h8 ^= h5; h7 = Rot64(h7,10); h6 += h8; h9 ^= h6; h8 = Rot64(h8,13); h7 += h9; h10^= h7; h9 = Rot64(h9,38); h8 += h10; h11^= h8; h10= Rot64(h10,53); h9 += h11; h0 ^= h9; h11= Rot64(h11,42); h10+= h0; h1 ^= h10; h0 = Rot64(h0,54); } static INLINE void End( const uint64 *data, uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3, uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7, uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11) __attribute__((always_inline)) { h0 += data[0]; h1 += data[1]; h2 += data[2]; h3 += data[3]; h4 += data[4]; h5 += data[5]; h6 += data[6]; h7 += data[7]; h8 += data[8]; h9 += data[9]; h10 += data[10]; h11 += data[11]; EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11); } // // The goal is for each bit of the input to expand into 128 bits of // apparent entropy before it is fully overwritten. // n trials both set and cleared at least m bits of h0 h1 h2 h3 // n: 2 m: 29 // n: 3 m: 46 // n: 4 m: 57 // n: 5 m: 107 // n: 6 m: 146 // n: 7 m: 152 // when run forwards or backwards // for all 1-bit and 2-bit diffs // with diffs defined by either xor or subtraction // with a base of all zeros plus a counter, or plus another bit, or random // static INLINE void ShortMix(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3) __attribute__((always_inline)) { h2 = Rot64(h2,50); h2 += h3; h0 ^= h2; h3 = Rot64(h3,52); h3 += h0; h1 ^= h3; h0 = Rot64(h0,30); h0 += h1; h2 ^= h0; h1 = Rot64(h1,41); h1 += h2; h3 ^= h1; h2 = Rot64(h2,54); h2 += h3; h0 ^= h2; h3 = Rot64(h3,48); h3 += h0; h1 ^= h3; h0 = Rot64(h0,38); h0 += h1; h2 ^= h0; h1 = Rot64(h1,37); h1 += h2; h3 ^= h1; h2 = Rot64(h2,62); h2 += h3; h0 ^= h2; h3 = Rot64(h3,34); h3 += h0; h1 ^= h3; h0 = Rot64(h0,5); h0 += h1; h2 ^= h0; h1 = Rot64(h1,36); h1 += h2; h3 ^= h1; } // // Mix all 4 inputs together so that h0, h1 are a hash of them all. // // For two inputs differing in just the input bits // Where "differ" means xor or subtraction // And the base value is random, or a counting value starting at that bit // The final result will have each bit of h0, h1 flip // For every input bit, // with probability 50 +- .3% (it is probably better than that) // For every pair of input bits, // with probability 50 +- .75% (the worst case is approximately that) // static INLINE void ShortEnd(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3) __attribute__((always_inline)) { h3 ^= h2; h2 = Rot64(h2,15); h3 += h2; h0 ^= h3; h3 = Rot64(h3,52); h0 += h3; h1 ^= h0; h0 = Rot64(h0,26); h1 += h0; h2 ^= h1; h1 = Rot64(h1,51); h2 += h1; h3 ^= h2; h2 = Rot64(h2,28); h3 += h2; h0 ^= h3; h3 = Rot64(h3,9); h0 += h3; h1 ^= h0; h0 = Rot64(h0,47); h1 += h0; h2 ^= h1; h1 = Rot64(h1,54); h2 += h1; h3 ^= h2; h2 = Rot64(h2,32); h3 += h2; h0 ^= h3; h3 = Rot64(h3,25); h0 += h3; h1 ^= h0; h0 = Rot64(h0,63); h1 += h0; } private: // // Short is used for messages under 192 bytes in length // Short has a low startup cost, the normal mode is good for long // keys, the cost crossover is at about 192 bytes. The two modes were // held to the same quality bar. // static INLINE std::pair< uint64, uint64 > Short( const void *message, // message (array of bytes, not necessarily aligned) size_t length, // length of message (in bytes) uint64 seed1, // in/out: in the seed, out the hash value uint64 seed2) // in/out: in the seed, out the hash value __attribute__((always_inline)) { uint64 buf[2*sc_numVars]; union { const uint8 *p8; uint32 *p32; uint64 *p64; size_t i; } u; u.p8 = reinterpret_cast< const uint8 *>( message ); if (!ALLOW_UNALIGNED_READS && (u.i & 0x7)) { memcpy(buf, message, length); u.p64 = buf; } size_t remainder = length%32; uint64 a= seed1; uint64 b= seed2; uint64 c=sc_const; uint64 d=sc_const; if (length > 15) { const uint64 *end = u.p64 + (length/32)*4; // handle all complete sets of 32 bytes for (; u.p64 < end; u.p64 += 4) { c += u.p64[0]; d += u.p64[1]; ShortMix(a,b,c,d); a += u.p64[2]; b += u.p64[3]; } //Handle the case of 16+ remaining bytes. if (remainder >= 16) { c += u.p64[0]; d += u.p64[1]; ShortMix(a,b,c,d); u.p64 += 2; remainder -= 16; } } // Handle the last 0..15 bytes, and its length d += uint64( length ) << 56; switch (remainder) { case 15: d += uint64( u.p8[14] ) << 48; case 14: d += uint64( u.p8[13] ) << 40; case 13: d += uint64( u.p8[12] ) << 32; case 12: d += u.p32[2]; c += u.p64[0]; break; case 11: d += uint64( u.p8[10] ) << 16; case 10: d += uint64( u.p8[9] ) << 8; case 9: d += uint64( u.p8[8] ); case 8: c += u.p64[0]; break; case 7: c += uint64(u.p8[6] ) << 48; case 6: c += uint64( u.p8[5] ) << 40; case 5: c += uint64( u.p8[4] ) << 32; case 4: c += u.p32[0]; break; case 3: c += uint64( u.p8[2] ) << 16; case 2: c += uint64( u.p8[1] ) << 8; case 1: c += uint64( u.p8[0] ); break; case 0: c += sc_const; d += sc_const; } ShortEnd(a,b,c,d); return std::make_pair( a, b ); } // number of uint64's in internal state static const size_t sc_numVars = 12; // size of the internal state static const size_t sc_blockSize = sc_numVars*8; // size of buffer of unhashed data, in bytes static const size_t sc_bufSize = 2*sc_blockSize; // // sc_const: a constant which: // * is not zero // * is odd // * is a not-very-regular mix of 1's and 0's // * does not need any other special mathematical properties // static const uint64 sc_const = 0xdeadbeefdeadbeefLL; uint64 m_data[2*sc_numVars]; // unhashed data, for partial messages uint64 m_state[sc_numVars]; // internal state of the hash size_t m_length; // total length of the input so far uint8 m_remainder; // length of unhashed data stashed in m_data }; struct SpookyState { SpookyState( uint64_t seed1, uint64_t seed2 ) : state() { state.Init( seed1, seed2 ); } SpookyState() = delete; SpookyState( const SpookyState & ) = delete; SpookyState &operator=( const SpookyState & ) = delete; void update( const void *message, size_t length ) { state.Update( message, length ); } hash128_t finalize() { return state.Final(); } private: SpookyHash state; }; } namespace { inline hash128_t spooky( const void *message, size_t length, uint64_t seed1, uint64_t seed2 ) { return jenkins::SpookyHash::Hash128( message, length, seed1, seed2 ); } } } } namespace brick_test { namespace hash { using namespace ::brick::hash; class Random { public: inline uint64 Value() { uint64 e = m_a - Rot64(m_b, 23); m_a = m_b ^ Rot64(m_c, 16); m_b = m_c + Rot64(m_d, 11); m_c = m_d + e; m_d = e + m_a; return m_d; } inline void Init( uint64 seed) { m_a = 0xdeadbeef; m_b = m_c = m_d = seed; for (int i=0; i<20; ++i) static_cast< void >( Value() ); } private: static inline uint64 Rot64(uint64 x, int k) { return (x << k) | (x >> (64-(k))); } uint64 m_a; uint64 m_b; uint64 m_c; uint64 m_d; }; #define BUFSIZE (512) using brick::hash::jenkins::SpookyHash; struct Jenkins { TEST(results) { static const uint64 expected[BUFSIZE] = { 0x6bf50919,0x70de1d26,0xa2b37298,0x35bc5fbf,0x8223b279,0x5bcb315e,0x53fe88a1,0xf9f1a233, 0xee193982,0x54f86f29,0xc8772d36,0x9ed60886,0x5f23d1da,0x1ed9f474,0xf2ef0c89,0x83ec01f9, 0xf274736c,0x7e9ac0df,0xc7aed250,0xb1015811,0xe23470f5,0x48ac20c4,0xe2ab3cd5,0x608f8363, 0xd0639e68,0xc4e8e7ab,0x863c7c5b,0x4ea63579,0x99ae8622,0x170c658b,0x149ba493,0x027bca7c, 0xe5cfc8b6,0xce01d9d7,0x11103330,0x5d1f5ed4,0xca720ecb,0xef408aec,0x733b90ec,0x855737a6, 0x9856c65f,0x647411f7,0x50777c74,0xf0f1a8b7,0x9d7e55a5,0xc68dd371,0xfc1af2cc,0x75728d0a, 0x390e5fdc,0xf389b84c,0xfb0ccf23,0xc95bad0e,0x5b1cb85a,0x6bdae14f,0x6deb4626,0x93047034, 0x6f3266c6,0xf529c3bd,0x396322e7,0x3777d042,0x1cd6a5a2,0x197b402e,0xc28d0d2b,0x09c1afb4, 0x069c8bb7,0x6f9d4e1e,0xd2621b5c,0xea68108d,0x8660cb8f,0xd61e6de6,0x7fba15c7,0xaacfaa97, 0xdb381902,0x4ea22649,0x5d414a1e,0xc3fc5984,0xa0fc9e10,0x347dc51c,0x37545fb6,0x8c84b26b, 0xf57efa5d,0x56afaf16,0xb6e1eb94,0x9218536a,0xe3cc4967,0xd3275ef4,0xea63536e,0x6086e499, 0xaccadce7,0xb0290d82,0x4ebfd0d6,0x46ccc185,0x2eeb10d3,0x474e3c8c,0x23c84aee,0x3abae1cb, 0x1499b81a,0xa2993951,0xeed176ad,0xdfcfe84c,0xde4a961f,0x4af13fe6,0xe0069c42,0xc14de8f5, 0x6e02ce8f,0x90d19f7f,0xbca4a484,0xd4efdd63,0x780fd504,0xe80310e3,0x03abbc12,0x90023849, 0xd6f6fb84,0xd6b354c5,0x5b8575f0,0x758f14e4,0x450de862,0x90704afb,0x47209a33,0xf226b726, 0xf858dab8,0x7c0d6de9,0xb05ce777,0xee5ff2d4,0x7acb6d5c,0x2d663f85,0x41c72a91,0x82356bf2, 0x94e948ec,0xd358d448,0xeca7814d,0x78cd7950,0xd6097277,0x97782a5d,0xf43fc6f4,0x105f0a38, 0x9e170082,0x4bfe566b,0x4371d25f,0xef25a364,0x698eb672,0x74f850e4,0x4678ff99,0x4a290dc6, 0x3918f07c,0x32c7d9cd,0x9f28e0af,0x0d3c5a86,0x7bfc8a45,0xddf0c7e1,0xdeacb86b,0x970b3c5c, 0x5e29e199,0xea28346d,0x6b59e71b,0xf8a8a46a,0x862f6ce4,0x3ccb740b,0x08761e9e,0xbfa01e5f, 0xf17cfa14,0x2dbf99fb,0x7a0be420,0x06137517,0xe020b266,0xd25bfc61,0xff10ed00,0x42e6be8b, 0x029ef587,0x683b26e0,0xb08afc70,0x7c1fd59e,0xbaae9a70,0x98c8c801,0xb6e35a26,0x57083971, 0x90a6a680,0x1b44169e,0x1dce237c,0x518e0a59,0xccb11358,0x7b8175fb,0xb8fe701a,0x10d259bb, 0xe806ce10,0x9212be79,0x4604ae7b,0x7fa22a84,0xe715b13a,0x0394c3b2,0x11efbbae,0xe13d9e19, 0x77e012bd,0x2d05114c,0xaecf2ddd,0xb2a2b4aa,0xb9429546,0x55dce815,0xc89138f8,0x46dcae20, 0x1f6f7162,0x0c557ebc,0x5b996932,0xafbbe7e2,0xd2bd5f62,0xff475b9f,0x9cec7108,0xeaddcffb, 0x5d751aef,0xf68f7bdf,0xf3f4e246,0x00983fcd,0x00bc82bb,0xbf5fd3e7,0xe80c7e2c,0x187d8b1f, 0xefafb9a7,0x8f27a148,0x5c9606a9,0xf2d2be3e,0xe992d13a,0xe4bcd152,0xce40b436,0x63d6a1fc, 0xdc1455c4,0x64641e39,0xd83010c9,0x2d535ae0,0x5b748f3e,0xf9a9146b,0x80f10294,0x2859acd4, 0x5fc846da,0x56d190e9,0x82167225,0x98e4daba,0xbf7865f3,0x00da7ae4,0x9b7cd126,0x644172f8, 0xde40c78f,0xe8803efc,0xdd331a2b,0x48485c3c,0x4ed01ddc,0x9c0b2d9e,0xb1c6e9d7,0xd797d43c, 0x274101ff,0x3bf7e127,0x91ebbc56,0x7ffeb321,0x4d42096f,0xd6e9456a,0x0bade318,0x2f40ee0b, 0x38cebf03,0x0cbc2e72,0xbf03e704,0x7b3e7a9a,0x8e985acd,0x90917617,0x413895f8,0xf11dde04, 0xc66f8244,0xe5648174,0x6c420271,0x2469d463,0x2540b033,0xdc788e7b,0xe4140ded,0x0990630a, 0xa54abed4,0x6e124829,0xd940155a,0x1c8836f6,0x38fda06c,0x5207ab69,0xf8be9342,0x774882a8, 0x56fc0d7e,0x53a99d6e,0x8241f634,0x9490954d,0x447130aa,0x8cc4a81f,0x0868ec83,0xc22c642d, 0x47880140,0xfbff3bec,0x0f531f41,0xf845a667,0x08c15fb7,0x1996cd81,0x86579103,0xe21dd863, 0x513d7f97,0x3984a1f1,0xdfcdc5f4,0x97766a5e,0x37e2b1da,0x41441f3f,0xabd9ddba,0x23b755a9, 0xda937945,0x103e650e,0x3eef7c8f,0x2760ff8d,0x2493a4cd,0x1d671225,0x3bf4bd4c,0xed6e1728, 0xc70e9e30,0x4e05e529,0x928d5aa6,0x164d0220,0xb5184306,0x4bd7efb3,0x63830f11,0xf3a1526c, 0xf1545450,0xd41d5df5,0x25a5060d,0x77b368da,0x4fe33c7e,0xeae09021,0xfdb053c4,0x2930f18d, 0xd37109ff,0x8511a781,0xc7e7cdd7,0x6aeabc45,0xebbeaeaa,0x9a0c4f11,0xda252cbb,0x5b248f41, 0x5223b5eb,0xe32ab782,0x8e6a1c97,0x11d3f454,0x3e05bd16,0x0059001d,0xce13ac97,0xf83b2b4c, 0x71db5c9a,0xdc8655a6,0x9e98597b,0x3fcae0a2,0x75e63ccd,0x076c72df,0x4754c6ad,0x26b5627b, 0xd818c697,0x998d5f3d,0xe94fc7b2,0x1f49ad1a,0xca7ff4ea,0x9fe72c05,0xfbd0cbbf,0xb0388ceb, 0xb76031e3,0xd0f53973,0xfb17907c,0xa4c4c10f,0x9f2d8af9,0xca0e56b0,0xb0d9b689,0xfcbf37a3, 0xfede8f7d,0xf836511c,0x744003fc,0x89eba576,0xcfdcf6a6,0xc2007f52,0xaaaf683f,0x62d2f9ca, 0xc996f77f,0x77a7b5b3,0x8ba7d0a4,0xef6a0819,0xa0d903c0,0x01b27431,0x58fffd4c,0x4827f45c, 0x44eb5634,0xae70edfc,0x591c740b,0x478bf338,0x2f3b513b,0x67bf518e,0x6fef4a0c,0x1e0b6917, 0x5ac0edc5,0x2e328498,0x077de7d5,0x5726020b,0x2aeda888,0x45b637ca,0xcf60858d,0x3dc91ae2, 0x3e6d5294,0xe6900d39,0x0f634c71,0x827a5fa4,0xc713994b,0x1c363494,0x3d43b615,0xe5fe7d15, 0xf6ada4f2,0x472099d5,0x04360d39,0x7f2a71d0,0x88a4f5ff,0x2c28fac5,0x4cd64801,0xfd78dd33, 0xc9bdd233,0x21e266cc,0x9bbf419d,0xcbf7d81d,0x80f15f96,0x04242657,0x53fb0f66,0xded11e46, 0xf2fdba97,0x8d45c9f1,0x4eeae802,0x17003659,0xb9db81a7,0xe734b1b2,0x9503c54e,0xb7c77c3e, 0x271dd0ab,0xd8b906b5,0x0d540ec6,0xf03b86e0,0x0fdb7d18,0x95e261af,0xad9ec04e,0x381f4a64, 0xfec798d7,0x09ea20be,0x0ef4ca57,0x1e6195bb,0xfd0da78b,0xcea1653b,0x157d9777,0xf04af50f, 0xad7baa23,0xd181714a,0x9bbdab78,0x6c7d1577,0x645eb1e7,0xa0648264,0x35839ca6,0x2287ef45, 0x32a64ca3,0x26111f6f,0x64814946,0xb0cddaf1,0x4351c59e,0x1b30471c,0xb970788a,0x30e9f597, 0xd7e58df1,0xc6d2b953,0xf5f37cf4,0x3d7c419e,0xf91ecb2d,0x9c87fd5d,0xb22384ce,0x8c7ac51c, 0x62c96801,0x57e54091,0x964536fe,0x13d3b189,0x4afd1580,0xeba62239,0xb82ea667,0xae18d43a, 0xbef04402,0x1942534f,0xc54bf260,0x3c8267f5,0xa1020ddd,0x112fcc8a,0xde596266,0xe91d0856, 0xf300c914,0xed84478e,0x5b65009e,0x4764da16,0xaf8e07a2,0x4088dc2c,0x9a0cad41,0x2c3f179b, 0xa67b83f7,0xf27eab09,0xdbe10e28,0xf04c911f,0xd1169f87,0x8e1e4976,0x17f57744,0xe4f5a33f, 0x27c2e04b,0x0b7523bd,0x07305776,0xc6be7503,0x918fa7c9,0xaf2e2cd9,0x82046f8e,0xcc1c8250 }; uint8 buf[BUFSIZE]; uint32 saw[BUFSIZE]; for (int i=0; i(buf+j+1), i, 0); } for (int j=1; j<8; ++j) { if (hash[0] != hash[j]) { printf("alignment problems: %d %d\n", i, j); ASSERT( false ); } } } } #undef BUFSIZE // test that all deltas of one or two input bits affect all output bits #define BUFSIZE 256 #define TRIES 50 #define MEASURES 6 // this takes hours, not doing that in tests... void deltas(int seed) { printf("\nall 1 or 2 bit input deltas get %d tries to flip every output bit ...\n", TRIES); Random random; random.Init(uint64(seed)); // for messages 0..BUFSIZE-1 bytes for (int h=0; h>1); measure[5][l] = measure[0][l] + measure[1][l]; measure[5][l] ^= (measure[4][l]>>1); } for (int l=0; l<2; ++l) { for (int m=0; m maxk) { maxk = k; } } } printf("passed for buffer size %d max %d\n", h, maxk); } } #undef BUFSIZE #undef TRIES #undef MEASURES // test that hashing pieces has the same behavior as hashing the whole #define BUFSIZE 1024 TEST(pieces) { char buf[BUFSIZE]; for (int i=0; i