//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of virtual tables. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CGCXXABI.h" #include "CodeGenModule.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/RecordLayout.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Format.h" #include "llvm/Transforms/Utils/Cloning.h" #include #include using namespace clang; using namespace CodeGen; CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, const ThunkInfo &Thunk) { const CXXMethodDecl *MD = cast(GD.getDecl()); // Compute the mangled name. SmallString<256> Name; llvm::raw_svector_ostream Out(Name); if (const CXXDestructorDecl* DD = dyn_cast(MD)) getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), Thunk.This, Out); else getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); Out.flush(); llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, /*DontDefer=*/true, /*IsThunk=*/true); } static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, const ThunkInfo &Thunk, llvm::Function *Fn) { CGM.setGlobalVisibility(Fn, MD); } static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, llvm::Function *ThunkFn, bool ForVTable, GlobalDecl GD) { CGM.setFunctionLinkage(GD, ThunkFn); CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, !Thunk.Return.isEmpty()); // Set the right visibility. const CXXMethodDecl *MD = cast(GD.getDecl()); setThunkVisibility(CGM, MD, Thunk, ThunkFn); if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); } #ifndef NDEBUG static bool similar(const ABIArgInfo &infoL, CanQualType typeL, const ABIArgInfo &infoR, CanQualType typeR) { return (infoL.getKind() == infoR.getKind() && (typeL == typeR || (isa(typeL) && isa(typeR)) || (isa(typeL) && isa(typeR)))); } #endif static RValue PerformReturnAdjustment(CodeGenFunction &CGF, QualType ResultType, RValue RV, const ThunkInfo &Thunk) { // Emit the return adjustment. bool NullCheckValue = !ResultType->isReferenceType(); llvm::BasicBlock *AdjustNull = nullptr; llvm::BasicBlock *AdjustNotNull = nullptr; llvm::BasicBlock *AdjustEnd = nullptr; llvm::Value *ReturnValue = RV.getScalarVal(); if (NullCheckValue) { AdjustNull = CGF.createBasicBlock("adjust.null"); AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); AdjustEnd = CGF.createBasicBlock("adjust.end"); llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); CGF.EmitBlock(AdjustNotNull); } ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue, Thunk.Return); if (NullCheckValue) { CGF.Builder.CreateBr(AdjustEnd); CGF.EmitBlock(AdjustNull); CGF.Builder.CreateBr(AdjustEnd); CGF.EmitBlock(AdjustEnd); llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); PHI->addIncoming(ReturnValue, AdjustNotNull); PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), AdjustNull); ReturnValue = PHI; } return RValue::get(ReturnValue); } // This function does roughly the same thing as GenerateThunk, but in a // very different way, so that va_start and va_end work correctly. // FIXME: This function assumes "this" is the first non-sret LLVM argument of // a function, and that there is an alloca built in the entry block // for all accesses to "this". // FIXME: This function assumes there is only one "ret" statement per function. // FIXME: Cloning isn't correct in the presence of indirect goto! // FIXME: This implementation of thunks bloats codesize by duplicating the // function definition. There are alternatives: // 1. Add some sort of stub support to LLVM for cases where we can // do a this adjustment, then a sibcall. // 2. We could transform the definition to take a va_list instead of an // actual variable argument list, then have the thunks (including a // no-op thunk for the regular definition) call va_start/va_end. // There's a bit of per-call overhead for this solution, but it's // better for codesize if the definition is long. llvm::Function * CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk) { const CXXMethodDecl *MD = cast(GD.getDecl()); const FunctionProtoType *FPT = MD->getType()->getAs(); QualType ResultType = FPT->getReturnType(); // Get the original function assert(FnInfo.isVariadic()); llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); llvm::Function *BaseFn = cast(Callee); // Clone to thunk. llvm::ValueToValueMapTy VMap; llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, /*ModuleLevelChanges=*/false); CGM.getModule().getFunctionList().push_back(NewFn); Fn->replaceAllUsesWith(NewFn); NewFn->takeName(Fn); Fn->eraseFromParent(); Fn = NewFn; // "Initialize" CGF (minimally). CurFn = Fn; // Get the "this" value llvm::Function::arg_iterator AI = Fn->arg_begin(); if (CGM.ReturnTypeUsesSRet(FnInfo)) ++AI; // Find the first store of "this", which will be to the alloca associated // with "this". llvm::Value *ThisPtr = &*AI; llvm::BasicBlock *EntryBB = Fn->begin(); llvm::Instruction *ThisStore = std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { return isa(I) && I.getOperand(0) == ThisPtr; }); assert(ThisStore && "Store of this should be in entry block?"); // Adjust "this", if necessary. Builder.SetInsertPoint(ThisStore); llvm::Value *AdjustedThisPtr = CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); ThisStore->setOperand(0, AdjustedThisPtr); if (!Thunk.Return.isEmpty()) { // Fix up the returned value, if necessary. for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { llvm::Instruction *T = I->getTerminator(); if (isa(T)) { RValue RV = RValue::get(T->getOperand(0)); T->eraseFromParent(); Builder.SetInsertPoint(&*I); RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); Builder.CreateRet(RV.getScalarVal()); break; } } } return Fn; } void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo) { assert(!CurGD.getDecl() && "CurGD was already set!"); CurGD = GD; CurFuncIsThunk = true; // Build FunctionArgs. const CXXMethodDecl *MD = cast(GD.getDecl()); QualType ThisType = MD->getThisType(getContext()); const FunctionProtoType *FPT = MD->getType()->getAs(); QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) ? ThisType : CGM.getCXXABI().hasMostDerivedReturn(GD) ? CGM.getContext().VoidPtrTy : FPT->getReturnType(); FunctionArgList FunctionArgs; // Create the implicit 'this' parameter declaration. CGM.getCXXABI().buildThisParam(*this, FunctionArgs); // Add the rest of the parameters. FunctionArgs.append(MD->param_begin(), MD->param_end()); if (isa(MD)) CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); // Start defining the function. StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, MD->getLocation(), MD->getLocation()); // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. CGM.getCXXABI().EmitInstanceFunctionProlog(*this); CXXThisValue = CXXABIThisValue; } void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk) { assert(isa(CurGD.getDecl()) && "Please use a new CGF for this thunk"); const CXXMethodDecl *MD = cast(CurGD.getDecl()); // Adjust the 'this' pointer if necessary llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment( *this, LoadCXXThis(), Thunk->This) : LoadCXXThis(); if (CurFnInfo->usesInAlloca()) { // We don't handle return adjusting thunks, because they require us to call // the copy constructor. For now, fall through and pretend the return // adjustment was empty so we don't crash. if (Thunk && !Thunk->Return.isEmpty()) { CGM.ErrorUnsupported( MD, "non-trivial argument copy for return-adjusting thunk"); } EmitMustTailThunk(MD, AdjustedThisPtr, Callee); return; } // Start building CallArgs. CallArgList CallArgs; QualType ThisType = MD->getThisType(getContext()); CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); if (isa(MD)) CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); // Add the rest of the arguments. for (const ParmVarDecl *PD : MD->params()) EmitDelegateCallArg(CallArgs, PD, PD->getLocStart()); const FunctionProtoType *FPT = MD->getType()->getAs(); #ifndef NDEBUG const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1)); assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); assert(isa(MD) || // ignore dtor return types similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) assert(similar(CallFnInfo.arg_begin()[i].info, CallFnInfo.arg_begin()[i].type, CurFnInfo->arg_begin()[i].info, CurFnInfo->arg_begin()[i].type)); #endif // Determine whether we have a return value slot to use. QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) ? ThisType : CGM.getCXXABI().hasMostDerivedReturn(CurGD) ? CGM.getContext().VoidPtrTy : FPT->getReturnType(); ReturnValueSlot Slot; if (!ResultType->isVoidType() && CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && !hasScalarEvaluationKind(CurFnInfo->getReturnType())) Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); // Now emit our call. llvm::Instruction *CallOrInvoke; RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke); // Consider return adjustment if we have ThunkInfo. if (Thunk && !Thunk->Return.isEmpty()) RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); // Emit return. if (!ResultType->isVoidType() && Slot.isNull()) CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); // Disable the final ARC autorelease. AutoreleaseResult = false; FinishFunction(); } void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, llvm::Value *Callee) { // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery // to translate AST arguments into LLVM IR arguments. For thunks, we know // that the caller prototype more or less matches the callee prototype with // the exception of 'this'. SmallVector Args; for (llvm::Argument &A : CurFn->args()) Args.push_back(&A); // Set the adjusted 'this' pointer. const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; if (ThisAI.isDirect()) { const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; llvm::Type *ThisType = Args[ThisArgNo]->getType(); if (ThisType != AdjustedThisPtr->getType()) AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); Args[ThisArgNo] = AdjustedThisPtr; } else { assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); llvm::Value *ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); llvm::Type *ThisType = cast(ThisAddr->getType())->getElementType(); if (ThisType != AdjustedThisPtr->getType()) AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); Builder.CreateStore(AdjustedThisPtr, ThisAddr); } // Emit the musttail call manually. Even if the prologue pushed cleanups, we // don't actually want to run them. llvm::CallInst *Call = Builder.CreateCall(Callee, Args); Call->setTailCallKind(llvm::CallInst::TCK_MustTail); // Apply the standard set of call attributes. unsigned CallingConv; CodeGen::AttributeListType AttributeList; CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv, /*AttrOnCallSite=*/true); llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), AttributeList); Call->setAttributes(Attrs); Call->setCallingConv(static_cast(CallingConv)); if (Call->getType()->isVoidTy()) Builder.CreateRetVoid(); else Builder.CreateRet(Call); // Finish the function to maintain CodeGenFunction invariants. // FIXME: Don't emit unreachable code. EmitBlock(createBasicBlock()); FinishFunction(); } void CodeGenFunction::generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk) { StartThunk(Fn, GD, FnInfo); // Get our callee. llvm::Type *Ty = CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); // Make the call and return the result. EmitCallAndReturnForThunk(Callee, &Thunk); } void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, bool ForVTable) { const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); // FIXME: re-use FnInfo in this computation. llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); llvm::GlobalValue *Entry; // Strip off a bitcast if we got one back. if (llvm::ConstantExpr *CE = dyn_cast(C)) { assert(CE->getOpcode() == llvm::Instruction::BitCast); Entry = cast(CE->getOperand(0)); } else { Entry = cast(C); } // There's already a declaration with the same name, check if it has the same // type or if we need to replace it. if (Entry->getType()->getElementType() != CGM.getTypes().GetFunctionTypeForVTable(GD)) { llvm::GlobalValue *OldThunkFn = Entry; // If the types mismatch then we have to rewrite the definition. assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); // Remove the name from the old thunk function and get a new thunk. OldThunkFn->setName(StringRef()); Entry = cast(CGM.GetAddrOfThunk(GD, Thunk)); // If needed, replace the old thunk with a bitcast. if (!OldThunkFn->use_empty()) { llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); } // Remove the old thunk. OldThunkFn->eraseFromParent(); } llvm::Function *ThunkFn = cast(Entry); bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; if (!ThunkFn->isDeclaration()) { if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { // There is already a thunk emitted for this function, do nothing. return; } setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); return; } CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); if (ThunkFn->isVarArg()) { // Varargs thunks are special; we can't just generate a call because // we can't copy the varargs. Our implementation is rather // expensive/sucky at the moment, so don't generate the thunk unless // we have to. // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. if (UseAvailableExternallyLinkage) return; ThunkFn = CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); } else { // Normal thunk body generation. CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk); } setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); } void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, const ThunkInfo &Thunk) { // If the ABI has key functions, only the TU with the key function should emit // the thunk. However, we can allow inlining of thunks if we emit them with // available_externally linkage together with vtables when optimizations are // enabled. if (CGM.getTarget().getCXXABI().hasKeyFunctions() && !CGM.getCodeGenOpts().OptimizationLevel) return; // We can't emit thunks for member functions with incomplete types. const CXXMethodDecl *MD = cast(GD.getDecl()); if (!CGM.getTypes().isFuncTypeConvertible( MD->getType()->castAs())) return; emitThunk(GD, Thunk, /*ForVTable=*/true); } void CodeGenVTables::EmitThunks(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl())->getCanonicalDecl(); // We don't need to generate thunks for the base destructor. if (isa(MD) && GD.getDtorType() == Dtor_Base) return; const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = VTContext->getThunkInfo(GD); if (!ThunkInfoVector) return; for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false); } llvm::Constant *CodeGenVTables::CreateVTableInitializer( const CXXRecordDecl *RD, const VTableComponent *Components, unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, unsigned NumVTableThunks, llvm::Constant *RTTI) { SmallVector Inits; llvm::Type *Int8PtrTy = CGM.Int8PtrTy; llvm::Type *PtrDiffTy = CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); unsigned NextVTableThunkIndex = 0; llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr; for (unsigned I = 0; I != NumComponents; ++I) { VTableComponent Component = Components[I]; llvm::Constant *Init = nullptr; switch (Component.getKind()) { case VTableComponent::CK_VCallOffset: Init = llvm::ConstantInt::get(PtrDiffTy, Component.getVCallOffset().getQuantity()); Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); break; case VTableComponent::CK_VBaseOffset: Init = llvm::ConstantInt::get(PtrDiffTy, Component.getVBaseOffset().getQuantity()); Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); break; case VTableComponent::CK_OffsetToTop: Init = llvm::ConstantInt::get(PtrDiffTy, Component.getOffsetToTop().getQuantity()); Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); break; case VTableComponent::CK_RTTI: Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); break; case VTableComponent::CK_FunctionPointer: case VTableComponent::CK_CompleteDtorPointer: case VTableComponent::CK_DeletingDtorPointer: { GlobalDecl GD; // Get the right global decl. switch (Component.getKind()) { default: llvm_unreachable("Unexpected vtable component kind"); case VTableComponent::CK_FunctionPointer: GD = Component.getFunctionDecl(); break; case VTableComponent::CK_CompleteDtorPointer: GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); break; case VTableComponent::CK_DeletingDtorPointer: GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); break; } if (cast(GD.getDecl())->isPure()) { // We have a pure virtual member function. if (!PureVirtualFn) { llvm::FunctionType *Ty = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, CGM.Int8PtrTy); } Init = PureVirtualFn; } else if (cast(GD.getDecl())->isDeleted()) { if (!DeletedVirtualFn) { llvm::FunctionType *Ty = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); StringRef DeletedCallName = CGM.getCXXABI().GetDeletedVirtualCallName(); DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, CGM.Int8PtrTy); } Init = DeletedVirtualFn; } else { // Check if we should use a thunk. if (NextVTableThunkIndex < NumVTableThunks && VTableThunks[NextVTableThunkIndex].first == I) { const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; maybeEmitThunkForVTable(GD, Thunk); Init = CGM.GetAddrOfThunk(GD, Thunk); NextVTableThunkIndex++; } else { llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); } Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); } break; } case VTableComponent::CK_UnusedFunctionPointer: Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); break; }; Inits.push_back(Init); } llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); return llvm::ConstantArray::get(ArrayType, Inits); } llvm::GlobalVariable * CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, llvm::GlobalVariable::LinkageTypes Linkage, VTableAddressPointsMapTy& AddressPoints) { if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) DI->completeClassData(Base.getBase()); std::unique_ptr VTLayout( getItaniumVTableContext().createConstructionVTableLayout( Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); // Add the address points. AddressPoints = VTLayout->getAddressPoints(); // Get the mangled construction vtable name. SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); cast(CGM.getCXXABI().getMangleContext()) .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), Base.getBase(), Out); Out.flush(); StringRef Name = OutName.str(); llvm::ArrayType *ArrayType = llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); // Construction vtable symbols are not part of the Itanium ABI, so we cannot // guarantee that they actually will be available externally. Instead, when // emitting an available_externally VTT, we provide references to an internal // linkage construction vtable. The ABI only requires complete-object vtables // to be the same for all instances of a type, not construction vtables. if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) Linkage = llvm::GlobalVariable::InternalLinkage; // Create the variable that will hold the construction vtable. llvm::GlobalVariable *VTable = CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); CGM.setGlobalVisibility(VTable, RD); // V-tables are always unnamed_addr. VTable->setUnnamedAddr(true); llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( CGM.getContext().getTagDeclType(Base.getBase())); // Create and set the initializer. llvm::Constant *Init = CreateVTableInitializer( Base.getBase(), VTLayout->vtable_component_begin(), VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), VTLayout->getNumVTableThunks(), RTTI); VTable->setInitializer(Init); CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get()); return VTable; } /// Compute the required linkage of the v-table for the given class. /// /// Note that we only call this at the end of the translation unit. llvm::GlobalVariable::LinkageTypes CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { if (!RD->isExternallyVisible()) return llvm::GlobalVariable::InternalLinkage; // We're at the end of the translation unit, so the current key // function is fully correct. const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); if (keyFunction && !RD->hasAttr()) { // If this class has a key function, use that to determine the // linkage of the vtable. const FunctionDecl *def = nullptr; if (keyFunction->hasBody(def)) keyFunction = cast(def); switch (keyFunction->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: assert(def && "Should not have been asked to emit this"); if (keyFunction->isInlined()) return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::LinkOnceODRLinkage : llvm::Function::InternalLinkage; return llvm::GlobalVariable::ExternalLinkage; case TSK_ImplicitInstantiation: return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::LinkOnceODRLinkage : llvm::Function::InternalLinkage; case TSK_ExplicitInstantiationDefinition: return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::WeakODRLinkage : llvm::Function::InternalLinkage; case TSK_ExplicitInstantiationDeclaration: llvm_unreachable("Should not have been asked to emit this"); } } // -fapple-kext mode does not support weak linkage, so we must use // internal linkage. if (Context.getLangOpts().AppleKext) return llvm::Function::InternalLinkage; llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = llvm::GlobalValue::LinkOnceODRLinkage; llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = llvm::GlobalValue::WeakODRLinkage; if (RD->hasAttr()) { // Cannot discard exported vtables. DiscardableODRLinkage = NonDiscardableODRLinkage; } else if (RD->hasAttr()) { // Imported vtables are available externally. DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; } switch (RD->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: case TSK_ImplicitInstantiation: return DiscardableODRLinkage; case TSK_ExplicitInstantiationDeclaration: return llvm::GlobalVariable::ExternalLinkage; case TSK_ExplicitInstantiationDefinition: return NonDiscardableODRLinkage; } llvm_unreachable("Invalid TemplateSpecializationKind!"); } /// This is a callback from Sema to tell us that that a particular v-table is /// required to be emitted in this translation unit. /// /// This is only called for vtables that _must_ be emitted (mainly due to key /// functions). For weak vtables, CodeGen tracks when they are needed and /// emits them as-needed. void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { VTables.GenerateClassData(theClass); } void CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) DI->completeClassData(RD); if (RD->getNumVBases()) CGM.getCXXABI().emitVirtualInheritanceTables(RD); CGM.getCXXABI().emitVTableDefinitions(*this, RD); } /// At this point in the translation unit, does it appear that can we /// rely on the vtable being defined elsewhere in the program? /// /// The response is really only definitive when called at the end of /// the translation unit. /// /// The only semantic restriction here is that the object file should /// not contain a v-table definition when that v-table is defined /// strongly elsewhere. Otherwise, we'd just like to avoid emitting /// v-tables when unnecessary. bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); // If we have an explicit instantiation declaration (and not a // definition), the v-table is defined elsewhere. TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); if (TSK == TSK_ExplicitInstantiationDeclaration) return true; // Otherwise, if the class is an instantiated template, the // v-table must be defined here. if (TSK == TSK_ImplicitInstantiation || TSK == TSK_ExplicitInstantiationDefinition) return false; // Otherwise, if the class doesn't have a key function (possibly // anymore), the v-table must be defined here. const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); if (!keyFunction) return false; // Otherwise, if we don't have a definition of the key function, the // v-table must be defined somewhere else. return !keyFunction->hasBody(); } /// Given that we're currently at the end of the translation unit, and /// we've emitted a reference to the v-table for this class, should /// we define that v-table? static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, const CXXRecordDecl *RD) { return !CGM.getVTables().isVTableExternal(RD); } /// Given that at some point we emitted a reference to one or more /// v-tables, and that we are now at the end of the translation unit, /// decide whether we should emit them. void CodeGenModule::EmitDeferredVTables() { #ifndef NDEBUG // Remember the size of DeferredVTables, because we're going to assume // that this entire operation doesn't modify it. size_t savedSize = DeferredVTables.size(); #endif typedef std::vector::const_iterator const_iterator; for (const_iterator i = DeferredVTables.begin(), e = DeferredVTables.end(); i != e; ++i) { const CXXRecordDecl *RD = *i; if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) VTables.GenerateClassData(RD); } assert(savedSize == DeferredVTables.size() && "deferred extra v-tables during v-table emission?"); DeferredVTables.clear(); } bool CodeGenModule::IsCFIBlacklistedRecord(const CXXRecordDecl *RD) { // FIXME: Make this user configurable. return RD->isInStdNamespace(); } void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable, const VTableLayout &VTLayout) { if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast)) return; CharUnits PointerWidth = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); std::vector BitsetEntries; // Create a bit set entry for each address point. for (auto &&AP : VTLayout.getAddressPoints()) { if (IsCFIBlacklistedRecord(AP.first.getBase())) continue; BitsetEntries.push_back(CreateVTableBitSetEntry( VTable, PointerWidth * AP.second, AP.first.getBase())); } // Sort the bit set entries for determinism. std::sort(BitsetEntries.begin(), BitsetEntries.end(), [](llvm::MDTuple *T1, llvm::MDTuple *T2) { if (T1 == T2) return false; StringRef S1 = cast(T1->getOperand(0))->getString(); StringRef S2 = cast(T2->getOperand(0))->getString(); if (S1 < S2) return true; if (S1 != S2) return false; uint64_t Offset1 = cast( cast(T1->getOperand(2)) ->getValue())->getZExtValue(); uint64_t Offset2 = cast( cast(T2->getOperand(2)) ->getValue())->getZExtValue(); assert(Offset1 != Offset2); return Offset1 < Offset2; }); llvm::NamedMDNode *BitsetsMD = getModule().getOrInsertNamedMetadata("llvm.bitsets"); for (auto BitsetEntry : BitsetEntries) BitsetsMD->addOperand(BitsetEntry); }