//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass turns explicit null checks of the form // // test %r10, %r10 // je throw_npe // movl (%r10), %esi // ... // // to // // faulting_load_op("movl (%r10), %esi", throw_npe) // ... // // With the help of a runtime that understands the .fault_maps section, // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs // a page fault. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Instruction.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; static cl::opt PageSize("imp-null-check-page-size", cl::desc("The page size of the target in " "bytes"), cl::init(4096)); #define DEBUG_TYPE "implicit-null-checks" STATISTIC(NumImplicitNullChecks, "Number of explicit null checks made implicit"); namespace { class ImplicitNullChecks : public MachineFunctionPass { /// Represents one null check that can be made implicit. struct NullCheck { // The memory operation the null check can be folded into. MachineInstr *MemOperation; // The instruction actually doing the null check (Ptr != 0). MachineInstr *CheckOperation; // The block the check resides in. MachineBasicBlock *CheckBlock; // The block branched to if the pointer is non-null. MachineBasicBlock *NotNullSucc; // The block branched to if the pointer is null. MachineBasicBlock *NullSucc; NullCheck() : MemOperation(), CheckOperation(), CheckBlock(), NotNullSucc(), NullSucc() {} explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, MachineBasicBlock *checkBlock, MachineBasicBlock *notNullSucc, MachineBasicBlock *nullSucc) : MemOperation(memOperation), CheckOperation(checkOperation), CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc) { } }; const TargetInstrInfo *TII = nullptr; const TargetRegisterInfo *TRI = nullptr; MachineModuleInfo *MMI = nullptr; bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, SmallVectorImpl &NullCheckList); MachineInstr *insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB, MCSymbol *HandlerLabel); void rewriteNullChecks(ArrayRef NullCheckList); public: static char ID; ImplicitNullChecks() : MachineFunctionPass(ID) { initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; }; } bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getRegInfo().getTargetRegisterInfo(); MMI = &MF.getMMI(); SmallVector NullCheckList; for (auto &MBB : MF) analyzeBlockForNullChecks(MBB, NullCheckList); if (!NullCheckList.empty()) rewriteNullChecks(NullCheckList); return !NullCheckList.empty(); } /// Analyze MBB to check if its terminating branch can be turned into an /// implicit null check. If yes, append a description of the said null check to /// NullCheckList and return true, else return false. bool ImplicitNullChecks::analyzeBlockForNullChecks( MachineBasicBlock &MBB, SmallVectorImpl &NullCheckList) { typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; MDNode *BranchMD = MBB.getBasicBlock() ? MBB.getBasicBlock()->getTerminator()->getMetadata("make.implicit") : nullptr; if (!BranchMD) return false; MachineBranchPredicate MBP; if (TII->AnalyzeBranchPredicate(MBB, MBP, true)) return false; // Is the predicate comparing an integer to zero? if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && (MBP.Predicate == MachineBranchPredicate::PRED_NE || MBP.Predicate == MachineBranchPredicate::PRED_EQ))) return false; // If we cannot erase the test instruction itself, then making the null check // implicit does not buy us much. if (!MBP.SingleUseCondition) return false; MachineBasicBlock *NotNullSucc, *NullSucc; if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { NotNullSucc = MBP.TrueDest; NullSucc = MBP.FalseDest; } else { NotNullSucc = MBP.FalseDest; NullSucc = MBP.TrueDest; } // We handle the simplest case for now. We can potentially do better by using // the machine dominator tree. if (NotNullSucc->pred_size() != 1) return false; // Starting with a code fragment like: // // test %RAX, %RAX // jne LblNotNull // // LblNull: // callq throw_NullPointerException // // LblNotNull: // Inst0 // Inst1 // ... // Def = Load (%RAX + ) // ... // // // we want to end up with // // Def = TrappingLoad (%RAX + ), LblNull // jmp LblNotNull ;; explicit or fallthrough // // LblNotNull: // Inst0 // Inst1 // ... // // LblNull: // callq throw_NullPointerException // unsigned PointerReg = MBP.LHS.getReg(); // As we scan NotNullSucc for a suitable load instruction, we keep track of // the registers defined and used by the instructions we scan past. This bit // of information lets us decide if it is legal to hoist the load instruction // we find (if we do find such an instruction) to before NotNullSucc. DenseSet RegDefs, RegUses; // Returns true if it is safe to reorder MI to before NotNullSucc. auto IsSafeToHoist = [&](MachineInstr *MI) { // Right now we don't want to worry about LLVM's memory model. This can be // made more precise later. for (auto *MMO : MI->memoperands()) if (!MMO->isUnordered()) return false; for (auto &MO : MI->operands()) { if (MO.isReg() && MO.getReg()) { for (unsigned Reg : RegDefs) if (TRI->regsOverlap(Reg, MO.getReg())) return false; // We found a write-after-write or read-after-write if (MO.isDef()) for (unsigned Reg : RegUses) if (TRI->regsOverlap(Reg, MO.getReg())) return false; // We found a write-after-read } } return true; }; for (auto MII = NotNullSucc->begin(), MIE = NotNullSucc->end(); MII != MIE; ++MII) { MachineInstr *MI = &*MII; unsigned BaseReg, Offset; if (TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) if (MI->mayLoad() && !MI->isPredicable() && BaseReg == PointerReg && Offset < PageSize && MI->getDesc().getNumDefs() == 1 && IsSafeToHoist(MI)) { NullCheckList.emplace_back(MI, MBP.ConditionDef, &MBB, NotNullSucc, NullSucc); return true; } // MI did not match our criteria for conversion to a trapping load. Check // if we can continue looking. if (MI->mayStore() || MI->hasUnmodeledSideEffects()) return false; for (auto *MMO : MI->memoperands()) // Right now we don't want to worry about LLVM's memory model. if (!MMO->isUnordered()) return false; // It _may_ be okay to reorder a later load instruction across MI. Make a // note of its operands so that we can make the legality check if we find a // suitable load instruction: for (auto &MO : MI->operands()) { if (!MO.isReg() || !MO.getReg()) continue; if (MO.isDef()) RegDefs.insert(MO.getReg()); else RegUses.insert(MO.getReg()); } } return false; } /// Wrap a machine load instruction, LoadMI, into a FAULTING_LOAD_OP machine /// instruction. The FAULTING_LOAD_OP instruction does the same load as LoadMI /// (defining the same register), and branches to HandlerLabel if the load /// faults. The FAULTING_LOAD_OP instruction is inserted at the end of MBB. MachineInstr *ImplicitNullChecks::insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB, MCSymbol *HandlerLabel) { DebugLoc DL; unsigned NumDefs = LoadMI->getDesc().getNumDefs(); assert(NumDefs == 1 && "other cases unhandled!"); (void)NumDefs; unsigned DefReg = LoadMI->defs().begin()->getReg(); assert(std::distance(LoadMI->defs().begin(), LoadMI->defs().end()) == 1 && "expected exactly one def!"); auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_LOAD_OP), DefReg) .addSym(HandlerLabel) .addImm(LoadMI->getOpcode()); for (auto &MO : LoadMI->uses()) MIB.addOperand(MO); MIB.setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end()); return MIB; } /// Rewrite the null checks in NullCheckList into implicit null checks. void ImplicitNullChecks::rewriteNullChecks( ArrayRef NullCheckList) { DebugLoc DL; for (auto &NC : NullCheckList) { MCSymbol *HandlerLabel = MMI->getContext().createTempSymbol(); // Remove the conditional branch dependent on the null check. unsigned BranchesRemoved = TII->RemoveBranch(*NC.CheckBlock); (void)BranchesRemoved; assert(BranchesRemoved > 0 && "expected at least one branch!"); // Insert a faulting load where the conditional branch was originally. We // check earlier ensures that this bit of code motion is legal. We do not // touch the successors list for any basic block since we haven't changed // control flow, we've just made it implicit. insertFaultingLoad(NC.MemOperation, NC.CheckBlock, HandlerLabel); NC.MemOperation->eraseFromParent(); NC.CheckOperation->eraseFromParent(); // Insert an *unconditional* branch to not-null successor. TII->InsertBranch(*NC.CheckBlock, NC.NotNullSucc, nullptr, /*Cond=*/None, DL); // Emit the HandlerLabel as an EH_LABEL. BuildMI(*NC.NullSucc, NC.NullSucc->begin(), DL, TII->get(TargetOpcode::EH_LABEL)).addSym(HandlerLabel); NumImplicitNullChecks++; } } char ImplicitNullChecks::ID = 0; char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks", "Implicit null checks", false, false) INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks", "Implicit null checks", false, false)