//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Fuzzer's main loop. //===----------------------------------------------------------------------===// #include "FuzzerInternal.h" #include #include namespace fuzzer { // Only one Fuzzer per process. static Fuzzer *F; Fuzzer::Fuzzer(UserSuppliedFuzzer &USF, FuzzingOptions Options) : USF(USF), Options(Options) { SetDeathCallback(); InitializeTraceState(); assert(!F); F = this; } void Fuzzer::SetDeathCallback() { __sanitizer_set_death_callback(StaticDeathCallback); } void Fuzzer::PrintUnitInASCIIOrTokens(const Unit &U, const char *PrintAfter) { if (Options.Tokens.empty()) { PrintASCII(U, PrintAfter); } else { auto T = SubstituteTokens(U); T.push_back(0); Printf("%s%s", T.data(), PrintAfter); } } void Fuzzer::StaticDeathCallback() { assert(F); F->DeathCallback(); } void Fuzzer::DeathCallback() { Printf("DEATH:\n"); Print(CurrentUnit, "\n"); PrintUnitInASCIIOrTokens(CurrentUnit, "\n"); WriteToCrash(CurrentUnit, "crash-"); } void Fuzzer::StaticAlarmCallback() { assert(F); F->AlarmCallback(); } void Fuzzer::AlarmCallback() { assert(Options.UnitTimeoutSec > 0); size_t Seconds = duration_cast(system_clock::now() - UnitStartTime).count(); if (Seconds == 0) return; if (Options.Verbosity >= 2) Printf("AlarmCallback %zd\n", Seconds); if (Seconds >= (size_t)Options.UnitTimeoutSec) { Printf("ALARM: working on the last Unit for %zd seconds\n", Seconds); Printf(" and the timeout value is %d (use -timeout=N to change)\n", Options.UnitTimeoutSec); Print(CurrentUnit, "\n"); PrintUnitInASCIIOrTokens(CurrentUnit, "\n"); WriteToCrash(CurrentUnit, "timeout-"); exit(1); } } void Fuzzer::PrintStats(const char *Where, size_t Cov, const char *End) { if (!Options.Verbosity) return; size_t Seconds = secondsSinceProcessStartUp(); size_t ExecPerSec = (Seconds ? TotalNumberOfRuns / Seconds : 0); Printf("#%zd\t%s cov %zd bits %zd units %zd exec/s %zd %s", TotalNumberOfRuns, Where, Cov, TotalBits(), Corpus.size(), ExecPerSec, End); } void Fuzzer::RereadOutputCorpus() { if (Options.OutputCorpus.empty()) return; std::vector AdditionalCorpus; ReadDirToVectorOfUnits(Options.OutputCorpus.c_str(), &AdditionalCorpus, &EpochOfLastReadOfOutputCorpus); if (Corpus.empty()) { Corpus = AdditionalCorpus; return; } if (!Options.Reload) return; if (Options.Verbosity >= 2) Printf("Reload: read %zd new units.\n", AdditionalCorpus.size()); for (auto &X : AdditionalCorpus) { if (X.size() > (size_t)Options.MaxLen) X.resize(Options.MaxLen); if (UnitHashesAddedToCorpus.insert(Hash(X)).second) { CurrentUnit.clear(); CurrentUnit.insert(CurrentUnit.begin(), X.begin(), X.end()); size_t NewCoverage = RunOne(CurrentUnit); if (NewCoverage) { Corpus.push_back(X); if (Options.Verbosity >= 1) PrintStats("RELOAD", NewCoverage); } } } } void Fuzzer::ShuffleAndMinimize() { size_t MaxCov = 0; bool PreferSmall = (Options.PreferSmallDuringInitialShuffle == 1 || (Options.PreferSmallDuringInitialShuffle == -1 && rand() % 2)); if (Options.Verbosity) Printf("PreferSmall: %d\n", PreferSmall); PrintStats("READ ", 0); std::vector NewCorpus; std::random_shuffle(Corpus.begin(), Corpus.end()); if (PreferSmall) std::stable_sort( Corpus.begin(), Corpus.end(), [](const Unit &A, const Unit &B) { return A.size() < B.size(); }); Unit &U = CurrentUnit; for (const auto &C : Corpus) { for (size_t First = 0; First < 1; First++) { U.clear(); size_t Last = std::min(First + Options.MaxLen, C.size()); U.insert(U.begin(), C.begin() + First, C.begin() + Last); size_t NewCoverage = RunOne(U); if (NewCoverage) { MaxCov = NewCoverage; NewCorpus.push_back(U); if (Options.Verbosity >= 2) Printf("NEW0: %zd L %zd\n", NewCoverage, U.size()); } } } Corpus = NewCorpus; for (auto &X : Corpus) UnitHashesAddedToCorpus.insert(Hash(X)); PrintStats("INITED", MaxCov); } size_t Fuzzer::RunOne(const Unit &U) { UnitStartTime = system_clock::now(); TotalNumberOfRuns++; size_t Res = 0; if (Options.UseFullCoverageSet) Res = RunOneMaximizeFullCoverageSet(U); else Res = RunOneMaximizeTotalCoverage(U); auto UnitStopTime = system_clock::now(); auto TimeOfUnit = duration_cast(UnitStopTime - UnitStartTime).count(); if (TimeOfUnit > TimeOfLongestUnitInSeconds) { TimeOfLongestUnitInSeconds = TimeOfUnit; Printf("Longest unit: %zd s:\n", TimeOfLongestUnitInSeconds); Print(U, "\n"); } return Res; } void Fuzzer::RunOneAndUpdateCorpus(const Unit &U) { if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) return; ReportNewCoverage(RunOne(U), U); } static uintptr_t HashOfArrayOfPCs(uintptr_t *PCs, uintptr_t NumPCs) { uintptr_t Res = 0; for (uintptr_t i = 0; i < NumPCs; i++) { Res = (Res + PCs[i]) * 7; } return Res; } Unit Fuzzer::SubstituteTokens(const Unit &U) const { Unit Res; for (auto Idx : U) { if (Idx < Options.Tokens.size()) { std::string Token = Options.Tokens[Idx]; Res.insert(Res.end(), Token.begin(), Token.end()); } else { Res.push_back(' '); } } // FIXME: Apply DFSan labels. return Res; } void Fuzzer::ExecuteCallback(const Unit &U) { if (Options.Tokens.empty()) { USF.TargetFunction(U.data(), U.size()); } else { auto T = SubstituteTokens(U); USF.TargetFunction(T.data(), T.size()); } } // Experimental. // Fuly reset the current coverage state, run a single unit, // compute a hash function from the full coverage set, // return non-zero if the hash value is new. // This produces tons of new units and as is it's only suitable for small tests, // e.g. test/FullCoverageSetTest.cpp. FIXME: make it scale. size_t Fuzzer::RunOneMaximizeFullCoverageSet(const Unit &U) { __sanitizer_reset_coverage(); ExecuteCallback(U); uintptr_t *PCs; uintptr_t NumPCs =__sanitizer_get_coverage_guards(&PCs); if (FullCoverageSets.insert(HashOfArrayOfPCs(PCs, NumPCs)).second) return FullCoverageSets.size(); return 0; } size_t Fuzzer::RunOneMaximizeTotalCoverage(const Unit &U) { size_t NumCounters = __sanitizer_get_number_of_counters(); if (Options.UseCounters) { CounterBitmap.resize(NumCounters); __sanitizer_update_counter_bitset_and_clear_counters(0); } size_t OldCoverage = __sanitizer_get_total_unique_coverage(); ExecuteCallback(U); size_t NewCoverage = __sanitizer_get_total_unique_coverage(); size_t NumNewBits = 0; if (Options.UseCounters) NumNewBits = __sanitizer_update_counter_bitset_and_clear_counters( CounterBitmap.data()); if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) && Options.Verbosity) PrintStats("pulse ", NewCoverage); if (NewCoverage > OldCoverage || NumNewBits) return NewCoverage; return 0; } void Fuzzer::WriteToOutputCorpus(const Unit &U) { if (Options.OutputCorpus.empty()) return; std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U)); WriteToFile(U, Path); if (Options.Verbosity >= 2) Printf("Written to %s\n", Path.c_str()); } void Fuzzer::WriteToCrash(const Unit &U, const char *Prefix) { std::string Path = Prefix + Hash(U); WriteToFile(U, Path); Printf("CRASHED; file written to %s\nBase64: ", Path.c_str()); PrintFileAsBase64(Path); } void Fuzzer::SaveCorpus() { if (Options.OutputCorpus.empty()) return; for (const auto &U : Corpus) WriteToFile(U, DirPlusFile(Options.OutputCorpus, Hash(U))); if (Options.Verbosity) Printf("Written corpus of %zd files to %s\n", Corpus.size(), Options.OutputCorpus.c_str()); } void Fuzzer::ReportNewCoverage(size_t NewCoverage, const Unit &U) { if (!NewCoverage) return; Corpus.push_back(U); UnitHashesAddedToCorpus.insert(Hash(U)); PrintStats("NEW ", NewCoverage, ""); if (Options.Verbosity) { Printf(" L: %zd", U.size()); if (U.size() < 30) { Printf(" "); PrintUnitInASCIIOrTokens(U, "\t"); Print(U); } Printf("\n"); } WriteToOutputCorpus(U); if (Options.ExitOnFirst) exit(0); } void Fuzzer::MutateAndTestOne(Unit *U) { for (int i = 0; i < Options.MutateDepth; i++) { StartTraceRecording(); size_t Size = U->size(); U->resize(Options.MaxLen); size_t NewSize = USF.Mutate(U->data(), Size, U->size()); assert(NewSize > 0 && "Mutator returned empty unit"); assert(NewSize <= (size_t)Options.MaxLen && "Mutator return overisized unit"); U->resize(NewSize); RunOneAndUpdateCorpus(*U); size_t NumTraceBasedMutations = StopTraceRecording(); for (size_t j = 0; j < NumTraceBasedMutations; j++) { ApplyTraceBasedMutation(j, U); RunOneAndUpdateCorpus(*U); } } } void Fuzzer::Loop(size_t NumIterations) { for (size_t i = 1; i <= NumIterations; i++) { for (size_t J1 = 0; J1 < Corpus.size(); J1++) { SyncCorpus(); RereadOutputCorpus(); if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) return; // First, simply mutate the unit w/o doing crosses. CurrentUnit = Corpus[J1]; MutateAndTestOne(&CurrentUnit); // Now, cross with others. if (Options.DoCrossOver && !Corpus[J1].empty()) { for (size_t J2 = 0; J2 < Corpus.size(); J2++) { CurrentUnit.resize(Options.MaxLen); size_t NewSize = USF.CrossOver( Corpus[J1].data(), Corpus[J1].size(), Corpus[J2].data(), Corpus[J2].size(), CurrentUnit.data(), CurrentUnit.size()); assert(NewSize > 0 && "CrossOver returned empty unit"); assert(NewSize <= (size_t)Options.MaxLen && "CrossOver return overisized unit"); CurrentUnit.resize(NewSize); MutateAndTestOne(&CurrentUnit); } } } } } void Fuzzer::SyncCorpus() { if (Options.SyncCommand.empty() || Options.OutputCorpus.empty()) return; auto Now = system_clock::now(); if (duration_cast(Now - LastExternalSync).count() < Options.SyncTimeout) return; LastExternalSync = Now; ExecuteCommand(Options.SyncCommand + " " + Options.OutputCorpus); } } // namespace fuzzer