//===- Record.cpp - Record implementation ---------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implement the tablegen record classes. // //===----------------------------------------------------------------------===// #include "llvm/TableGen/Record.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/TableGen/Error.h" using namespace llvm; //===----------------------------------------------------------------------===// // std::string wrapper for DenseMap purposes //===----------------------------------------------------------------------===// namespace llvm { /// TableGenStringKey - This is a wrapper for std::string suitable for /// using as a key to a DenseMap. Because there isn't a particularly /// good way to indicate tombstone or empty keys for strings, we want /// to wrap std::string to indicate that this is a "special" string /// not expected to take on certain values (those of the tombstone and /// empty keys). This makes things a little safer as it clarifies /// that DenseMap is really not appropriate for general strings. class TableGenStringKey { public: TableGenStringKey(const std::string &str) : data(str) {} TableGenStringKey(const char *str) : data(str) {} const std::string &str() const { return data; } friend hash_code hash_value(const TableGenStringKey &Value) { using llvm::hash_value; return hash_value(Value.str()); } private: std::string data; }; /// Specialize DenseMapInfo for TableGenStringKey. template<> struct DenseMapInfo { static inline TableGenStringKey getEmptyKey() { TableGenStringKey Empty("<<>>"); return Empty; } static inline TableGenStringKey getTombstoneKey() { TableGenStringKey Tombstone("<<>>"); return Tombstone; } static unsigned getHashValue(const TableGenStringKey& Val) { using llvm::hash_value; return hash_value(Val); } static bool isEqual(const TableGenStringKey& LHS, const TableGenStringKey& RHS) { return LHS.str() == RHS.str(); } }; } // namespace llvm //===----------------------------------------------------------------------===// // Type implementations //===----------------------------------------------------------------------===// BitRecTy BitRecTy::Shared; IntRecTy IntRecTy::Shared; StringRecTy StringRecTy::Shared; DagRecTy DagRecTy::Shared; void RecTy::dump() const { print(errs()); } ListRecTy *RecTy::getListTy() { if (!ListTy) ListTy.reset(new ListRecTy(this)); return ListTy.get(); } bool RecTy::typeIsConvertibleTo(const RecTy *RHS) const { assert(RHS && "NULL pointer"); return Kind == RHS->getRecTyKind(); } bool BitRecTy::typeIsConvertibleTo(const RecTy *RHS) const{ if (RecTy::typeIsConvertibleTo(RHS) || RHS->getRecTyKind() == IntRecTyKind) return true; if (const BitsRecTy *BitsTy = dyn_cast(RHS)) return BitsTy->getNumBits() == 1; return false; } BitsRecTy *BitsRecTy::get(unsigned Sz) { static std::vector> Shared; if (Sz >= Shared.size()) Shared.resize(Sz + 1); std::unique_ptr &Ty = Shared[Sz]; if (!Ty) Ty.reset(new BitsRecTy(Sz)); return Ty.get(); } std::string BitsRecTy::getAsString() const { return "bits<" + utostr(Size) + ">"; } bool BitsRecTy::typeIsConvertibleTo(const RecTy *RHS) const { if (RecTy::typeIsConvertibleTo(RHS)) //argument and the sender are same type return cast(RHS)->Size == Size; RecTyKind kind = RHS->getRecTyKind(); return (kind == BitRecTyKind && Size == 1) || (kind == IntRecTyKind); } bool IntRecTy::typeIsConvertibleTo(const RecTy *RHS) const { RecTyKind kind = RHS->getRecTyKind(); return kind==BitRecTyKind || kind==BitsRecTyKind || kind==IntRecTyKind; } std::string StringRecTy::getAsString() const { return "string"; } std::string ListRecTy::getAsString() const { return "list<" + Ty->getAsString() + ">"; } bool ListRecTy::typeIsConvertibleTo(const RecTy *RHS) const { if (const auto *ListTy = dyn_cast(RHS)) return Ty->typeIsConvertibleTo(ListTy->getElementType()); return false; } std::string DagRecTy::getAsString() const { return "dag"; } RecordRecTy *RecordRecTy::get(Record *R) { return dyn_cast(R->getDefInit()->getType()); } std::string RecordRecTy::getAsString() const { return Rec->getName(); } bool RecordRecTy::typeIsConvertibleTo(const RecTy *RHS) const { const RecordRecTy *RTy = dyn_cast(RHS); if (!RTy) return false; if (RTy->getRecord() == Rec || Rec->isSubClassOf(RTy->getRecord())) return true; for (Record *SC : RTy->getRecord()->getSuperClasses()) if (Rec->isSubClassOf(SC)) return true; return false; } /// resolveTypes - Find a common type that T1 and T2 convert to. /// Return null if no such type exists. /// RecTy *llvm::resolveTypes(RecTy *T1, RecTy *T2) { if (T1->typeIsConvertibleTo(T2)) return T2; if (T2->typeIsConvertibleTo(T1)) return T1; // If one is a Record type, check superclasses if (RecordRecTy *RecTy1 = dyn_cast(T1)) { // See if T2 inherits from a type T1 also inherits from for (Record *SuperRec1 : RecTy1->getRecord()->getSuperClasses()) { RecordRecTy *SuperRecTy1 = RecordRecTy::get(SuperRec1); RecTy *NewType1 = resolveTypes(SuperRecTy1, T2); if (NewType1) return NewType1; } } if (RecordRecTy *RecTy2 = dyn_cast(T2)) { // See if T1 inherits from a type T2 also inherits from for (Record *SuperRec2 : RecTy2->getRecord()->getSuperClasses()) { RecordRecTy *SuperRecTy2 = RecordRecTy::get(SuperRec2); RecTy *NewType2 = resolveTypes(T1, SuperRecTy2); if (NewType2) return NewType2; } } return nullptr; } //===----------------------------------------------------------------------===// // Initializer implementations //===----------------------------------------------------------------------===// void Init::anchor() { } void Init::dump() const { return print(errs()); } UnsetInit *UnsetInit::get() { static UnsetInit TheInit; return &TheInit; } Init *UnsetInit::convertInitializerTo(RecTy *Ty) const { if (auto *BRT = dyn_cast(Ty)) { SmallVector NewBits(BRT->getNumBits()); for (unsigned i = 0; i != BRT->getNumBits(); ++i) NewBits[i] = UnsetInit::get(); return BitsInit::get(NewBits); } // All other types can just be returned. return const_cast(this); } BitInit *BitInit::get(bool V) { static BitInit True(true); static BitInit False(false); return V ? &True : &False; } Init *BitInit::convertInitializerTo(RecTy *Ty) const { if (isa(Ty)) return const_cast(this); if (isa(Ty)) return IntInit::get(getValue()); if (auto *BRT = dyn_cast(Ty)) { // Can only convert single bit. if (BRT->getNumBits() == 1) return BitsInit::get(const_cast(this)); } return nullptr; } static void ProfileBitsInit(FoldingSetNodeID &ID, ArrayRef Range) { ID.AddInteger(Range.size()); for (Init *I : Range) ID.AddPointer(I); } BitsInit *BitsInit::get(ArrayRef Range) { static FoldingSet ThePool; static std::vector> TheActualPool; FoldingSetNodeID ID; ProfileBitsInit(ID, Range); void *IP = nullptr; if (BitsInit *I = ThePool.FindNodeOrInsertPos(ID, IP)) return I; BitsInit *I = new BitsInit(Range); ThePool.InsertNode(I, IP); TheActualPool.push_back(std::unique_ptr(I)); return I; } void BitsInit::Profile(FoldingSetNodeID &ID) const { ProfileBitsInit(ID, Bits); } Init *BitsInit::convertInitializerTo(RecTy *Ty) const { if (isa(Ty)) { if (getNumBits() != 1) return nullptr; // Only accept if just one bit! return getBit(0); } if (auto *BRT = dyn_cast(Ty)) { // If the number of bits is right, return it. Otherwise we need to expand // or truncate. if (getNumBits() != BRT->getNumBits()) return nullptr; return const_cast(this); } if (isa(Ty)) { int64_t Result = 0; for (unsigned i = 0, e = getNumBits(); i != e; ++i) if (auto *Bit = dyn_cast(getBit(i))) Result |= static_cast(Bit->getValue()) << i; else return nullptr; return IntInit::get(Result); } return nullptr; } Init * BitsInit::convertInitializerBitRange(const std::vector &Bits) const { SmallVector NewBits(Bits.size()); for (unsigned i = 0, e = Bits.size(); i != e; ++i) { if (Bits[i] >= getNumBits()) return nullptr; NewBits[i] = getBit(Bits[i]); } return BitsInit::get(NewBits); } std::string BitsInit::getAsString() const { std::string Result = "{ "; for (unsigned i = 0, e = getNumBits(); i != e; ++i) { if (i) Result += ", "; if (Init *Bit = getBit(e-i-1)) Result += Bit->getAsString(); else Result += "*"; } return Result + " }"; } // Fix bit initializer to preserve the behavior that bit reference from a unset // bits initializer will resolve into VarBitInit to keep the field name and bit // number used in targets with fixed insn length. static Init *fixBitInit(const RecordVal *RV, Init *Before, Init *After) { if (RV || !isa(After)) return After; return Before; } // resolveReferences - If there are any field references that refer to fields // that have been filled in, we can propagate the values now. // Init *BitsInit::resolveReferences(Record &R, const RecordVal *RV) const { bool Changed = false; SmallVector NewBits(getNumBits()); Init *CachedInit = nullptr; Init *CachedBitVar = nullptr; bool CachedBitVarChanged = false; for (unsigned i = 0, e = getNumBits(); i != e; ++i) { Init *CurBit = Bits[i]; Init *CurBitVar = CurBit->getBitVar(); NewBits[i] = CurBit; if (CurBitVar == CachedBitVar) { if (CachedBitVarChanged) { Init *Bit = CachedInit->getBit(CurBit->getBitNum()); NewBits[i] = fixBitInit(RV, CurBit, Bit); } continue; } CachedBitVar = CurBitVar; CachedBitVarChanged = false; Init *B; do { B = CurBitVar; CurBitVar = CurBitVar->resolveReferences(R, RV); CachedBitVarChanged |= B != CurBitVar; Changed |= B != CurBitVar; } while (B != CurBitVar); CachedInit = CurBitVar; if (CachedBitVarChanged) { Init *Bit = CurBitVar->getBit(CurBit->getBitNum()); NewBits[i] = fixBitInit(RV, CurBit, Bit); } } if (Changed) return BitsInit::get(NewBits); return const_cast(this); } IntInit *IntInit::get(int64_t V) { static DenseMap> ThePool; std::unique_ptr &I = ThePool[V]; if (!I) I.reset(new IntInit(V)); return I.get(); } std::string IntInit::getAsString() const { return itostr(Value); } /// canFitInBitfield - Return true if the number of bits is large enough to hold /// the integer value. static bool canFitInBitfield(int64_t Value, unsigned NumBits) { // For example, with NumBits == 4, we permit Values from [-7 .. 15]. return (NumBits >= sizeof(Value) * 8) || (Value >> NumBits == 0) || (Value >> (NumBits-1) == -1); } Init *IntInit::convertInitializerTo(RecTy *Ty) const { if (isa(Ty)) return const_cast(this); if (isa(Ty)) { int64_t Val = getValue(); if (Val != 0 && Val != 1) return nullptr; // Only accept 0 or 1 for a bit! return BitInit::get(Val != 0); } if (auto *BRT = dyn_cast(Ty)) { int64_t Value = getValue(); // Make sure this bitfield is large enough to hold the integer value. if (!canFitInBitfield(Value, BRT->getNumBits())) return nullptr; SmallVector NewBits(BRT->getNumBits()); for (unsigned i = 0; i != BRT->getNumBits(); ++i) NewBits[i] = BitInit::get(Value & (1LL << i)); return BitsInit::get(NewBits); } return nullptr; } Init * IntInit::convertInitializerBitRange(const std::vector &Bits) const { SmallVector NewBits(Bits.size()); for (unsigned i = 0, e = Bits.size(); i != e; ++i) { if (Bits[i] >= 64) return nullptr; NewBits[i] = BitInit::get(Value & (INT64_C(1) << Bits[i])); } return BitsInit::get(NewBits); } StringInit *StringInit::get(StringRef V) { static StringMap> ThePool; std::unique_ptr &I = ThePool[V]; if (!I) I.reset(new StringInit(V)); return I.get(); } Init *StringInit::convertInitializerTo(RecTy *Ty) const { if (isa(Ty)) return const_cast(this); return nullptr; } static void ProfileListInit(FoldingSetNodeID &ID, ArrayRef Range, RecTy *EltTy) { ID.AddInteger(Range.size()); ID.AddPointer(EltTy); for (Init *I : Range) ID.AddPointer(I); } ListInit *ListInit::get(ArrayRef Range, RecTy *EltTy) { static FoldingSet ThePool; static std::vector> TheActualPool; FoldingSetNodeID ID; ProfileListInit(ID, Range, EltTy); void *IP = nullptr; if (ListInit *I = ThePool.FindNodeOrInsertPos(ID, IP)) return I; ListInit *I = new ListInit(Range, EltTy); ThePool.InsertNode(I, IP); TheActualPool.push_back(std::unique_ptr(I)); return I; } void ListInit::Profile(FoldingSetNodeID &ID) const { RecTy *EltTy = cast(getType())->getElementType(); ProfileListInit(ID, Values, EltTy); } Init *ListInit::convertInitializerTo(RecTy *Ty) const { if (auto *LRT = dyn_cast(Ty)) { std::vector Elements; // Verify that all of the elements of the list are subclasses of the // appropriate class! for (Init *I : getValues()) if (Init *CI = I->convertInitializerTo(LRT->getElementType())) Elements.push_back(CI); else return nullptr; if (isa(getType())) return ListInit::get(Elements, Ty); } return nullptr; } Init * ListInit::convertInitListSlice(const std::vector &Elements) const { std::vector Vals; for (unsigned i = 0, e = Elements.size(); i != e; ++i) { if (Elements[i] >= size()) return nullptr; Vals.push_back(getElement(Elements[i])); } return ListInit::get(Vals, getType()); } Record *ListInit::getElementAsRecord(unsigned i) const { assert(i < Values.size() && "List element index out of range!"); DefInit *DI = dyn_cast(Values[i]); if (!DI) PrintFatalError("Expected record in list!"); return DI->getDef(); } Init *ListInit::resolveReferences(Record &R, const RecordVal *RV) const { std::vector Resolved; Resolved.reserve(size()); bool Changed = false; for (Init *CurElt : getValues()) { Init *E; do { E = CurElt; CurElt = CurElt->resolveReferences(R, RV); Changed |= E != CurElt; } while (E != CurElt); Resolved.push_back(E); } if (Changed) return ListInit::get(Resolved, getType()); return const_cast(this); } Init *ListInit::resolveListElementReference(Record &R, const RecordVal *IRV, unsigned Elt) const { if (Elt >= size()) return nullptr; // Out of range reference. Init *E = getElement(Elt); // If the element is set to some value, or if we are resolving a reference // to a specific variable and that variable is explicitly unset, then // replace the VarListElementInit with it. if (IRV || !isa(E)) return E; return nullptr; } std::string ListInit::getAsString() const { std::string Result = "["; for (unsigned i = 0, e = Values.size(); i != e; ++i) { if (i) Result += ", "; Result += Values[i]->getAsString(); } return Result + "]"; } Init *OpInit::resolveListElementReference(Record &R, const RecordVal *IRV, unsigned Elt) const { Init *Resolved = resolveReferences(R, IRV); OpInit *OResolved = dyn_cast(Resolved); if (OResolved) { Resolved = OResolved->Fold(&R, nullptr); } if (Resolved != this) { TypedInit *Typed = cast(Resolved); if (Init *New = Typed->resolveListElementReference(R, IRV, Elt)) return New; return VarListElementInit::get(Typed, Elt); } return nullptr; } Init *OpInit::getBit(unsigned Bit) const { if (getType() == BitRecTy::get()) return const_cast(this); return VarBitInit::get(const_cast(this), Bit); } UnOpInit *UnOpInit::get(UnaryOp opc, Init *lhs, RecTy *Type) { typedef std::pair, RecTy *> Key; static DenseMap> ThePool; Key TheKey(std::make_pair(std::make_pair(opc, lhs), Type)); std::unique_ptr &I = ThePool[TheKey]; if (!I) I.reset(new UnOpInit(opc, lhs, Type)); return I.get(); } Init *UnOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const { switch (getOpcode()) { case CAST: { if (isa(getType())) { if (StringInit *LHSs = dyn_cast(LHS)) return LHSs; if (DefInit *LHSd = dyn_cast(LHS)) return StringInit::get(LHSd->getAsString()); if (IntInit *LHSi = dyn_cast(LHS)) return StringInit::get(LHSi->getAsString()); } else { if (StringInit *LHSs = dyn_cast(LHS)) { std::string Name = LHSs->getValue(); // From TGParser::ParseIDValue if (CurRec) { if (const RecordVal *RV = CurRec->getValue(Name)) { if (RV->getType() != getType()) PrintFatalError("type mismatch in cast"); return VarInit::get(Name, RV->getType()); } Init *TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name, ":"); if (CurRec->isTemplateArg(TemplateArgName)) { const RecordVal *RV = CurRec->getValue(TemplateArgName); assert(RV && "Template arg doesn't exist??"); if (RV->getType() != getType()) PrintFatalError("type mismatch in cast"); return VarInit::get(TemplateArgName, RV->getType()); } } if (CurMultiClass) { Init *MCName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::"); if (CurMultiClass->Rec.isTemplateArg(MCName)) { const RecordVal *RV = CurMultiClass->Rec.getValue(MCName); assert(RV && "Template arg doesn't exist??"); if (RV->getType() != getType()) PrintFatalError("type mismatch in cast"); return VarInit::get(MCName, RV->getType()); } } assert(CurRec && "NULL pointer"); if (Record *D = (CurRec->getRecords()).getDef(Name)) return DefInit::get(D); PrintFatalError(CurRec->getLoc(), "Undefined reference:'" + Name + "'\n"); } } break; } case HEAD: { if (ListInit *LHSl = dyn_cast(LHS)) { assert(!LHSl->empty() && "Empty list in head"); return LHSl->getElement(0); } break; } case TAIL: { if (ListInit *LHSl = dyn_cast(LHS)) { assert(!LHSl->empty() && "Empty list in tail"); // Note the +1. We can't just pass the result of getValues() // directly. return ListInit::get(LHSl->getValues().slice(1), LHSl->getType()); } break; } case EMPTY: { if (ListInit *LHSl = dyn_cast(LHS)) return IntInit::get(LHSl->empty()); if (StringInit *LHSs = dyn_cast(LHS)) return IntInit::get(LHSs->getValue().empty()); break; } } return const_cast(this); } Init *UnOpInit::resolveReferences(Record &R, const RecordVal *RV) const { Init *lhs = LHS->resolveReferences(R, RV); if (LHS != lhs) return (UnOpInit::get(getOpcode(), lhs, getType()))->Fold(&R, nullptr); return Fold(&R, nullptr); } std::string UnOpInit::getAsString() const { std::string Result; switch (Opc) { case CAST: Result = "!cast<" + getType()->getAsString() + ">"; break; case HEAD: Result = "!head"; break; case TAIL: Result = "!tail"; break; case EMPTY: Result = "!empty"; break; } return Result + "(" + LHS->getAsString() + ")"; } BinOpInit *BinOpInit::get(BinaryOp opc, Init *lhs, Init *rhs, RecTy *Type) { typedef std::pair< std::pair, Init *>, RecTy * > Key; static DenseMap> ThePool; Key TheKey(std::make_pair(std::make_pair(std::make_pair(opc, lhs), rhs), Type)); std::unique_ptr &I = ThePool[TheKey]; if (!I) I.reset(new BinOpInit(opc, lhs, rhs, Type)); return I.get(); } Init *BinOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const { switch (getOpcode()) { case CONCAT: { DagInit *LHSs = dyn_cast(LHS); DagInit *RHSs = dyn_cast(RHS); if (LHSs && RHSs) { DefInit *LOp = dyn_cast(LHSs->getOperator()); DefInit *ROp = dyn_cast(RHSs->getOperator()); if (!LOp || !ROp || LOp->getDef() != ROp->getDef()) PrintFatalError("Concated Dag operators do not match!"); std::vector Args; std::vector ArgNames; for (unsigned i = 0, e = LHSs->getNumArgs(); i != e; ++i) { Args.push_back(LHSs->getArg(i)); ArgNames.push_back(LHSs->getArgName(i)); } for (unsigned i = 0, e = RHSs->getNumArgs(); i != e; ++i) { Args.push_back(RHSs->getArg(i)); ArgNames.push_back(RHSs->getArgName(i)); } return DagInit::get(LHSs->getOperator(), "", Args, ArgNames); } break; } case LISTCONCAT: { ListInit *LHSs = dyn_cast(LHS); ListInit *RHSs = dyn_cast(RHS); if (LHSs && RHSs) { std::vector Args; Args.insert(Args.end(), LHSs->begin(), LHSs->end()); Args.insert(Args.end(), RHSs->begin(), RHSs->end()); return ListInit::get( Args, cast(LHSs->getType())->getElementType()); } break; } case STRCONCAT: { StringInit *LHSs = dyn_cast(LHS); StringInit *RHSs = dyn_cast(RHS); if (LHSs && RHSs) return StringInit::get(LHSs->getValue() + RHSs->getValue()); break; } case EQ: { // try to fold eq comparison for 'bit' and 'int', otherwise fallback // to string objects. IntInit *L = dyn_cast_or_null(LHS->convertInitializerTo(IntRecTy::get())); IntInit *R = dyn_cast_or_null(RHS->convertInitializerTo(IntRecTy::get())); if (L && R) return IntInit::get(L->getValue() == R->getValue()); StringInit *LHSs = dyn_cast(LHS); StringInit *RHSs = dyn_cast(RHS); // Make sure we've resolved if (LHSs && RHSs) return IntInit::get(LHSs->getValue() == RHSs->getValue()); break; } case ADD: case AND: case SHL: case SRA: case SRL: { IntInit *LHSi = dyn_cast_or_null(LHS->convertInitializerTo(IntRecTy::get())); IntInit *RHSi = dyn_cast_or_null(RHS->convertInitializerTo(IntRecTy::get())); if (LHSi && RHSi) { int64_t LHSv = LHSi->getValue(), RHSv = RHSi->getValue(); int64_t Result; switch (getOpcode()) { default: llvm_unreachable("Bad opcode!"); case ADD: Result = LHSv + RHSv; break; case AND: Result = LHSv & RHSv; break; case SHL: Result = LHSv << RHSv; break; case SRA: Result = LHSv >> RHSv; break; case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break; } return IntInit::get(Result); } break; } } return const_cast(this); } Init *BinOpInit::resolveReferences(Record &R, const RecordVal *RV) const { Init *lhs = LHS->resolveReferences(R, RV); Init *rhs = RHS->resolveReferences(R, RV); if (LHS != lhs || RHS != rhs) return (BinOpInit::get(getOpcode(), lhs, rhs, getType()))->Fold(&R,nullptr); return Fold(&R, nullptr); } std::string BinOpInit::getAsString() const { std::string Result; switch (Opc) { case CONCAT: Result = "!con"; break; case ADD: Result = "!add"; break; case AND: Result = "!and"; break; case SHL: Result = "!shl"; break; case SRA: Result = "!sra"; break; case SRL: Result = "!srl"; break; case EQ: Result = "!eq"; break; case LISTCONCAT: Result = "!listconcat"; break; case STRCONCAT: Result = "!strconcat"; break; } return Result + "(" + LHS->getAsString() + ", " + RHS->getAsString() + ")"; } TernOpInit *TernOpInit::get(TernaryOp opc, Init *lhs, Init *mhs, Init *rhs, RecTy *Type) { typedef std::pair< std::pair< std::pair, Init *>, Init * >, Init * > Key; static DenseMap> ThePool; Key TheKey(std::make_pair(std::make_pair(std::make_pair(std::make_pair(opc, Type), lhs), mhs), rhs)); std::unique_ptr &I = ThePool[TheKey]; if (!I) I.reset(new TernOpInit(opc, lhs, mhs, rhs, Type)); return I.get(); } static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type, Record *CurRec, MultiClass *CurMultiClass); static Init *EvaluateOperation(OpInit *RHSo, Init *LHS, Init *Arg, RecTy *Type, Record *CurRec, MultiClass *CurMultiClass) { // If this is a dag, recurse if (auto *TArg = dyn_cast(Arg)) if (isa(TArg->getType())) return ForeachHelper(LHS, Arg, RHSo, Type, CurRec, CurMultiClass); std::vector NewOperands; for (unsigned i = 0; i < RHSo->getNumOperands(); ++i) { if (auto *RHSoo = dyn_cast(RHSo->getOperand(i))) { if (Init *Result = EvaluateOperation(RHSoo, LHS, Arg, Type, CurRec, CurMultiClass)) NewOperands.push_back(Result); else NewOperands.push_back(Arg); } else if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) { NewOperands.push_back(Arg); } else { NewOperands.push_back(RHSo->getOperand(i)); } } // Now run the operator and use its result as the new leaf const OpInit *NewOp = RHSo->clone(NewOperands); Init *NewVal = NewOp->Fold(CurRec, CurMultiClass); return (NewVal != NewOp) ? NewVal : nullptr; } static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type, Record *CurRec, MultiClass *CurMultiClass) { OpInit *RHSo = dyn_cast(RHS); if (!RHSo) PrintFatalError(CurRec->getLoc(), "!foreach requires an operator\n"); TypedInit *LHSt = dyn_cast(LHS); if (!LHSt) PrintFatalError(CurRec->getLoc(), "!foreach requires typed variable\n"); DagInit *MHSd = dyn_cast(MHS); if (MHSd && isa(Type)) { Init *Val = MHSd->getOperator(); if (Init *Result = EvaluateOperation(RHSo, LHS, Val, Type, CurRec, CurMultiClass)) Val = Result; std::vector > args; for (unsigned int i = 0; i < MHSd->getNumArgs(); ++i) { Init *Arg = MHSd->getArg(i); std::string ArgName = MHSd->getArgName(i); // Process args if (Init *Result = EvaluateOperation(RHSo, LHS, Arg, Type, CurRec, CurMultiClass)) Arg = Result; // TODO: Process arg names args.push_back(std::make_pair(Arg, ArgName)); } return DagInit::get(Val, "", args); } ListInit *MHSl = dyn_cast(MHS); if (MHSl && isa(Type)) { std::vector NewOperands; std::vector NewList(MHSl->begin(), MHSl->end()); for (Init *&Item : NewList) { NewOperands.clear(); for(unsigned i = 0; i < RHSo->getNumOperands(); ++i) { // First, replace the foreach variable with the list item if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) NewOperands.push_back(Item); else NewOperands.push_back(RHSo->getOperand(i)); } // Now run the operator and use its result as the new list item const OpInit *NewOp = RHSo->clone(NewOperands); Init *NewItem = NewOp->Fold(CurRec, CurMultiClass); if (NewItem != NewOp) Item = NewItem; } return ListInit::get(NewList, MHSl->getType()); } return nullptr; } Init *TernOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const { switch (getOpcode()) { case SUBST: { DefInit *LHSd = dyn_cast(LHS); VarInit *LHSv = dyn_cast(LHS); StringInit *LHSs = dyn_cast(LHS); DefInit *MHSd = dyn_cast(MHS); VarInit *MHSv = dyn_cast(MHS); StringInit *MHSs = dyn_cast(MHS); DefInit *RHSd = dyn_cast(RHS); VarInit *RHSv = dyn_cast(RHS); StringInit *RHSs = dyn_cast(RHS); if (LHSd && MHSd && RHSd) { Record *Val = RHSd->getDef(); if (LHSd->getAsString() == RHSd->getAsString()) Val = MHSd->getDef(); return DefInit::get(Val); } if (LHSv && MHSv && RHSv) { std::string Val = RHSv->getName(); if (LHSv->getAsString() == RHSv->getAsString()) Val = MHSv->getName(); return VarInit::get(Val, getType()); } if (LHSs && MHSs && RHSs) { std::string Val = RHSs->getValue(); std::string::size_type found; std::string::size_type idx = 0; while (true) { found = Val.find(LHSs->getValue(), idx); if (found == std::string::npos) break; Val.replace(found, LHSs->getValue().size(), MHSs->getValue()); idx = found + MHSs->getValue().size(); } return StringInit::get(Val); } break; } case FOREACH: { if (Init *Result = ForeachHelper(LHS, MHS, RHS, getType(), CurRec, CurMultiClass)) return Result; break; } case IF: { IntInit *LHSi = dyn_cast(LHS); if (Init *I = LHS->convertInitializerTo(IntRecTy::get())) LHSi = dyn_cast(I); if (LHSi) { if (LHSi->getValue()) return MHS; return RHS; } break; } } return const_cast(this); } Init *TernOpInit::resolveReferences(Record &R, const RecordVal *RV) const { Init *lhs = LHS->resolveReferences(R, RV); if (Opc == IF && lhs != LHS) { IntInit *Value = dyn_cast(lhs); if (Init *I = lhs->convertInitializerTo(IntRecTy::get())) Value = dyn_cast(I); if (Value) { // Short-circuit if (Value->getValue()) { Init *mhs = MHS->resolveReferences(R, RV); return (TernOpInit::get(getOpcode(), lhs, mhs, RHS, getType()))->Fold(&R, nullptr); } Init *rhs = RHS->resolveReferences(R, RV); return (TernOpInit::get(getOpcode(), lhs, MHS, rhs, getType()))->Fold(&R, nullptr); } } Init *mhs = MHS->resolveReferences(R, RV); Init *rhs = RHS->resolveReferences(R, RV); if (LHS != lhs || MHS != mhs || RHS != rhs) return (TernOpInit::get(getOpcode(), lhs, mhs, rhs, getType()))->Fold(&R, nullptr); return Fold(&R, nullptr); } std::string TernOpInit::getAsString() const { std::string Result; switch (Opc) { case SUBST: Result = "!subst"; break; case FOREACH: Result = "!foreach"; break; case IF: Result = "!if"; break; } return Result + "(" + LHS->getAsString() + ", " + MHS->getAsString() + ", " + RHS->getAsString() + ")"; } RecTy *TypedInit::getFieldType(const std::string &FieldName) const { if (RecordRecTy *RecordType = dyn_cast(getType())) if (RecordVal *Field = RecordType->getRecord()->getValue(FieldName)) return Field->getType(); return nullptr; } Init * TypedInit::convertInitializerTo(RecTy *Ty) const { if (isa(Ty)) { if (getType()->typeIsConvertibleTo(Ty)) return const_cast(this); return nullptr; } if (isa(Ty)) { if (isa(getType())) return const_cast(this); return nullptr; } if (isa(Ty)) { // Accept variable if it is already of bit type! if (isa(getType())) return const_cast(this); if (auto *BitsTy = dyn_cast(getType())) { // Accept only bits<1> expression. if (BitsTy->getNumBits() == 1) return const_cast(this); return nullptr; } // Ternary !if can be converted to bit, but only if both sides are // convertible to a bit. if (const auto *TOI = dyn_cast(this)) { if (TOI->getOpcode() == TernOpInit::TernaryOp::IF && TOI->getMHS()->convertInitializerTo(BitRecTy::get()) && TOI->getRHS()->convertInitializerTo(BitRecTy::get())) return const_cast(this); return nullptr; } return nullptr; } if (auto *BRT = dyn_cast(Ty)) { if (BRT->getNumBits() == 1 && isa(getType())) return BitsInit::get(const_cast(this)); if (getType()->typeIsConvertibleTo(BRT)) { SmallVector NewBits(BRT->getNumBits()); for (unsigned i = 0; i != BRT->getNumBits(); ++i) NewBits[i] = VarBitInit::get(const_cast(this), i); return BitsInit::get(NewBits); } return nullptr; } if (auto *DLRT = dyn_cast(Ty)) { if (auto *SLRT = dyn_cast(getType())) if (SLRT->getElementType()->typeIsConvertibleTo(DLRT->getElementType())) return const_cast(this); return nullptr; } if (auto *DRT = dyn_cast(Ty)) { if (getType()->typeIsConvertibleTo(DRT)) return const_cast(this); return nullptr; } if (auto *SRRT = dyn_cast(Ty)) { // Ensure that this is compatible with Rec. if (RecordRecTy *DRRT = dyn_cast(getType())) if (DRRT->getRecord()->isSubClassOf(SRRT->getRecord()) || DRRT->getRecord() == SRRT->getRecord()) return const_cast(this); return nullptr; } return nullptr; } Init * TypedInit::convertInitializerBitRange(const std::vector &Bits) const { BitsRecTy *T = dyn_cast(getType()); if (!T) return nullptr; // Cannot subscript a non-bits variable. unsigned NumBits = T->getNumBits(); SmallVector NewBits(Bits.size()); for (unsigned i = 0, e = Bits.size(); i != e; ++i) { if (Bits[i] >= NumBits) return nullptr; NewBits[i] = VarBitInit::get(const_cast(this), Bits[i]); } return BitsInit::get(NewBits); } Init * TypedInit::convertInitListSlice(const std::vector &Elements) const { ListRecTy *T = dyn_cast(getType()); if (!T) return nullptr; // Cannot subscript a non-list variable. if (Elements.size() == 1) return VarListElementInit::get(const_cast(this), Elements[0]); std::vector ListInits; ListInits.reserve(Elements.size()); for (unsigned i = 0, e = Elements.size(); i != e; ++i) ListInits.push_back(VarListElementInit::get(const_cast(this), Elements[i])); return ListInit::get(ListInits, T); } VarInit *VarInit::get(const std::string &VN, RecTy *T) { Init *Value = StringInit::get(VN); return VarInit::get(Value, T); } VarInit *VarInit::get(Init *VN, RecTy *T) { typedef std::pair Key; static DenseMap> ThePool; Key TheKey(std::make_pair(T, VN)); std::unique_ptr &I = ThePool[TheKey]; if (!I) I.reset(new VarInit(VN, T)); return I.get(); } const std::string &VarInit::getName() const { StringInit *NameString = cast(getNameInit()); return NameString->getValue(); } Init *VarInit::getBit(unsigned Bit) const { if (getType() == BitRecTy::get()) return const_cast(this); return VarBitInit::get(const_cast(this), Bit); } Init *VarInit::resolveListElementReference(Record &R, const RecordVal *IRV, unsigned Elt) const { if (R.isTemplateArg(getNameInit())) return nullptr; if (IRV && IRV->getNameInit() != getNameInit()) return nullptr; RecordVal *RV = R.getValue(getNameInit()); assert(RV && "Reference to a non-existent variable?"); ListInit *LI = dyn_cast(RV->getValue()); if (!LI) return VarListElementInit::get(cast(RV->getValue()), Elt); if (Elt >= LI->size()) return nullptr; // Out of range reference. Init *E = LI->getElement(Elt); // If the element is set to some value, or if we are resolving a reference // to a specific variable and that variable is explicitly unset, then // replace the VarListElementInit with it. if (IRV || !isa(E)) return E; return nullptr; } RecTy *VarInit::getFieldType(const std::string &FieldName) const { if (RecordRecTy *RTy = dyn_cast(getType())) if (const RecordVal *RV = RTy->getRecord()->getValue(FieldName)) return RV->getType(); return nullptr; } Init *VarInit::getFieldInit(Record &R, const RecordVal *RV, const std::string &FieldName) const { if (isa(getType())) if (const RecordVal *Val = R.getValue(VarName)) { if (RV != Val && (RV || isa(Val->getValue()))) return nullptr; Init *TheInit = Val->getValue(); assert(TheInit != this && "Infinite loop detected!"); if (Init *I = TheInit->getFieldInit(R, RV, FieldName)) return I; return nullptr; } return nullptr; } /// resolveReferences - This method is used by classes that refer to other /// variables which may not be defined at the time the expression is formed. /// If a value is set for the variable later, this method will be called on /// users of the value to allow the value to propagate out. /// Init *VarInit::resolveReferences(Record &R, const RecordVal *RV) const { if (RecordVal *Val = R.getValue(VarName)) if (RV == Val || (!RV && !isa(Val->getValue()))) return Val->getValue(); return const_cast(this); } VarBitInit *VarBitInit::get(TypedInit *T, unsigned B) { typedef std::pair Key; static DenseMap> ThePool; Key TheKey(std::make_pair(T, B)); std::unique_ptr &I = ThePool[TheKey]; if (!I) I.reset(new VarBitInit(T, B)); return I.get(); } Init *VarBitInit::convertInitializerTo(RecTy *Ty) const { if (isa(Ty)) return const_cast(this); return nullptr; } std::string VarBitInit::getAsString() const { return TI->getAsString() + "{" + utostr(Bit) + "}"; } Init *VarBitInit::resolveReferences(Record &R, const RecordVal *RV) const { Init *I = TI->resolveReferences(R, RV); if (TI != I) return I->getBit(getBitNum()); return const_cast(this); } VarListElementInit *VarListElementInit::get(TypedInit *T, unsigned E) { typedef std::pair Key; static DenseMap> ThePool; Key TheKey(std::make_pair(T, E)); std::unique_ptr &I = ThePool[TheKey]; if (!I) I.reset(new VarListElementInit(T, E)); return I.get(); } std::string VarListElementInit::getAsString() const { return TI->getAsString() + "[" + utostr(Element) + "]"; } Init * VarListElementInit::resolveReferences(Record &R, const RecordVal *RV) const { if (Init *I = getVariable()->resolveListElementReference(R, RV, getElementNum())) return I; return const_cast(this); } Init *VarListElementInit::getBit(unsigned Bit) const { if (getType() == BitRecTy::get()) return const_cast(this); return VarBitInit::get(const_cast(this), Bit); } Init *VarListElementInit:: resolveListElementReference(Record &R, const RecordVal *RV, unsigned Elt) const { if (Init *Result = TI->resolveListElementReference(R, RV, Element)) { if (TypedInit *TInit = dyn_cast(Result)) { if (Init *Result2 = TInit->resolveListElementReference(R, RV, Elt)) return Result2; return VarListElementInit::get(TInit, Elt); } return Result; } return nullptr; } DefInit *DefInit::get(Record *R) { return R->getDefInit(); } Init *DefInit::convertInitializerTo(RecTy *Ty) const { if (auto *RRT = dyn_cast(Ty)) if (getDef()->isSubClassOf(RRT->getRecord())) return const_cast(this); return nullptr; } RecTy *DefInit::getFieldType(const std::string &FieldName) const { if (const RecordVal *RV = Def->getValue(FieldName)) return RV->getType(); return nullptr; } Init *DefInit::getFieldInit(Record &R, const RecordVal *RV, const std::string &FieldName) const { return Def->getValue(FieldName)->getValue(); } std::string DefInit::getAsString() const { return Def->getName(); } FieldInit *FieldInit::get(Init *R, const std::string &FN) { typedef std::pair Key; static DenseMap> ThePool; Key TheKey(std::make_pair(R, FN)); std::unique_ptr &I = ThePool[TheKey]; if (!I) I.reset(new FieldInit(R, FN)); return I.get(); } Init *FieldInit::getBit(unsigned Bit) const { if (getType() == BitRecTy::get()) return const_cast(this); return VarBitInit::get(const_cast(this), Bit); } Init *FieldInit::resolveListElementReference(Record &R, const RecordVal *RV, unsigned Elt) const { if (Init *ListVal = Rec->getFieldInit(R, RV, FieldName)) if (ListInit *LI = dyn_cast(ListVal)) { if (Elt >= LI->size()) return nullptr; Init *E = LI->getElement(Elt); // If the element is set to some value, or if we are resolving a // reference to a specific variable and that variable is explicitly // unset, then replace the VarListElementInit with it. if (RV || !isa(E)) return E; } return nullptr; } Init *FieldInit::resolveReferences(Record &R, const RecordVal *RV) const { Init *NewRec = RV ? Rec->resolveReferences(R, RV) : Rec; if (Init *BitsVal = NewRec->getFieldInit(R, RV, FieldName)) { Init *BVR = BitsVal->resolveReferences(R, RV); return BVR->isComplete() ? BVR : const_cast(this); } if (NewRec != Rec) return FieldInit::get(NewRec, FieldName); return const_cast(this); } static void ProfileDagInit(FoldingSetNodeID &ID, Init *V, const std::string &VN, ArrayRef ArgRange, ArrayRef NameRange) { ID.AddPointer(V); ID.AddString(VN); ArrayRef::iterator Arg = ArgRange.begin(); ArrayRef::iterator Name = NameRange.begin(); while (Arg != ArgRange.end()) { assert(Name != NameRange.end() && "Arg name underflow!"); ID.AddPointer(*Arg++); ID.AddString(*Name++); } assert(Name == NameRange.end() && "Arg name overflow!"); } DagInit * DagInit::get(Init *V, const std::string &VN, ArrayRef ArgRange, ArrayRef NameRange) { static FoldingSet ThePool; static std::vector> TheActualPool; FoldingSetNodeID ID; ProfileDagInit(ID, V, VN, ArgRange, NameRange); void *IP = nullptr; if (DagInit *I = ThePool.FindNodeOrInsertPos(ID, IP)) return I; DagInit *I = new DagInit(V, VN, ArgRange, NameRange); ThePool.InsertNode(I, IP); TheActualPool.push_back(std::unique_ptr(I)); return I; } DagInit * DagInit::get(Init *V, const std::string &VN, const std::vector > &args) { std::vector Args; std::vector Names; for (const auto &Arg : args) { Args.push_back(Arg.first); Names.push_back(Arg.second); } return DagInit::get(V, VN, Args, Names); } void DagInit::Profile(FoldingSetNodeID &ID) const { ProfileDagInit(ID, Val, ValName, Args, ArgNames); } Init *DagInit::convertInitializerTo(RecTy *Ty) const { if (isa(Ty)) return const_cast(this); return nullptr; } Init *DagInit::resolveReferences(Record &R, const RecordVal *RV) const { std::vector NewArgs; for (unsigned i = 0, e = Args.size(); i != e; ++i) NewArgs.push_back(Args[i]->resolveReferences(R, RV)); Init *Op = Val->resolveReferences(R, RV); if (Args != NewArgs || Op != Val) return DagInit::get(Op, ValName, NewArgs, ArgNames); return const_cast(this); } std::string DagInit::getAsString() const { std::string Result = "(" + Val->getAsString(); if (!ValName.empty()) Result += ":" + ValName; if (!Args.empty()) { Result += " " + Args[0]->getAsString(); if (!ArgNames[0].empty()) Result += ":$" + ArgNames[0]; for (unsigned i = 1, e = Args.size(); i != e; ++i) { Result += ", " + Args[i]->getAsString(); if (!ArgNames[i].empty()) Result += ":$" + ArgNames[i]; } } return Result + ")"; } //===----------------------------------------------------------------------===// // Other implementations //===----------------------------------------------------------------------===// RecordVal::RecordVal(Init *N, RecTy *T, bool P) : NameAndPrefix(N, P), Ty(T) { Value = UnsetInit::get()->convertInitializerTo(Ty); assert(Value && "Cannot create unset value for current type!"); } RecordVal::RecordVal(const std::string &N, RecTy *T, bool P) : NameAndPrefix(StringInit::get(N), P), Ty(T) { Value = UnsetInit::get()->convertInitializerTo(Ty); assert(Value && "Cannot create unset value for current type!"); } const std::string &RecordVal::getName() const { return cast(getNameInit())->getValue(); } void RecordVal::dump() const { errs() << *this; } void RecordVal::print(raw_ostream &OS, bool PrintSem) const { if (getPrefix()) OS << "field "; OS << *getType() << " " << getNameInitAsString(); if (getValue()) OS << " = " << *getValue(); if (PrintSem) OS << ";\n"; } unsigned Record::LastID = 0; void Record::init() { checkName(); // Every record potentially has a def at the top. This value is // replaced with the top-level def name at instantiation time. RecordVal DN("NAME", StringRecTy::get(), 0); addValue(DN); } void Record::checkName() { // Ensure the record name has string type. const TypedInit *TypedName = cast(Name); if (!isa(TypedName->getType())) PrintFatalError(getLoc(), "Record name is not a string!"); } DefInit *Record::getDefInit() { if (!TheInit) TheInit.reset(new DefInit(this, new RecordRecTy(this))); return TheInit.get(); } const std::string &Record::getName() const { return cast(Name)->getValue(); } void Record::setName(Init *NewName) { Name = NewName; checkName(); // DO NOT resolve record values to the name at this point because // there might be default values for arguments of this def. Those // arguments might not have been resolved yet so we don't want to // prematurely assume values for those arguments were not passed to // this def. // // Nonetheless, it may be that some of this Record's values // reference the record name. Indeed, the reason for having the // record name be an Init is to provide this flexibility. The extra // resolve steps after completely instantiating defs takes care of // this. See TGParser::ParseDef and TGParser::ParseDefm. } void Record::setName(const std::string &Name) { setName(StringInit::get(Name)); } /// resolveReferencesTo - If anything in this record refers to RV, replace the /// reference to RV with the RHS of RV. If RV is null, we resolve all possible /// references. void Record::resolveReferencesTo(const RecordVal *RV) { for (unsigned i = 0, e = Values.size(); i != e; ++i) { if (RV == &Values[i]) // Skip resolve the same field as the given one continue; if (Init *V = Values[i].getValue()) if (Values[i].setValue(V->resolveReferences(*this, RV))) PrintFatalError(getLoc(), "Invalid value is found when setting '" + Values[i].getNameInitAsString() + "' after resolving references" + (RV ? " against '" + RV->getNameInitAsString() + "' of (" + RV->getValue()->getAsUnquotedString() + ")" : "") + "\n"); } Init *OldName = getNameInit(); Init *NewName = Name->resolveReferences(*this, RV); if (NewName != OldName) { // Re-register with RecordKeeper. setName(NewName); } } void Record::dump() const { errs() << *this; } raw_ostream &llvm::operator<<(raw_ostream &OS, const Record &R) { OS << R.getNameInitAsString(); const std::vector &TArgs = R.getTemplateArgs(); if (!TArgs.empty()) { OS << "<"; bool NeedComma = false; for (const Init *TA : TArgs) { if (NeedComma) OS << ", "; NeedComma = true; const RecordVal *RV = R.getValue(TA); assert(RV && "Template argument record not found??"); RV->print(OS, false); } OS << ">"; } OS << " {"; ArrayRef SC = R.getSuperClasses(); if (!SC.empty()) { OS << "\t//"; for (const Record *Super : SC) OS << " " << Super->getNameInitAsString(); } OS << "\n"; for (const RecordVal &Val : R.getValues()) if (Val.getPrefix() && !R.isTemplateArg(Val.getName())) OS << Val; for (const RecordVal &Val : R.getValues()) if (!Val.getPrefix() && !R.isTemplateArg(Val.getName())) OS << Val; return OS << "}\n"; } /// getValueInit - Return the initializer for a value with the specified name, /// or abort if the field does not exist. /// Init *Record::getValueInit(StringRef FieldName) const { const RecordVal *R = getValue(FieldName); if (!R || !R->getValue()) PrintFatalError(getLoc(), "Record `" + getName() + "' does not have a field named `" + FieldName + "'!\n"); return R->getValue(); } /// getValueAsString - This method looks up the specified field and returns its /// value as a string, aborts if the field does not exist or if /// the value is not a string. /// std::string Record::getValueAsString(StringRef FieldName) const { const RecordVal *R = getValue(FieldName); if (!R || !R->getValue()) PrintFatalError(getLoc(), "Record `" + getName() + "' does not have a field named `" + FieldName + "'!\n"); if (StringInit *SI = dyn_cast(R->getValue())) return SI->getValue(); PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have a string initializer!"); } /// getValueAsBitsInit - This method looks up the specified field and returns /// its value as a BitsInit, aborts if the field does not exist or if /// the value is not the right type. /// BitsInit *Record::getValueAsBitsInit(StringRef FieldName) const { const RecordVal *R = getValue(FieldName); if (!R || !R->getValue()) PrintFatalError(getLoc(), "Record `" + getName() + "' does not have a field named `" + FieldName + "'!\n"); if (BitsInit *BI = dyn_cast(R->getValue())) return BI; PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have a BitsInit initializer!"); } /// getValueAsListInit - This method looks up the specified field and returns /// its value as a ListInit, aborting if the field does not exist or if /// the value is not the right type. /// ListInit *Record::getValueAsListInit(StringRef FieldName) const { const RecordVal *R = getValue(FieldName); if (!R || !R->getValue()) PrintFatalError(getLoc(), "Record `" + getName() + "' does not have a field named `" + FieldName + "'!\n"); if (ListInit *LI = dyn_cast(R->getValue())) return LI; PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have a list initializer!"); } /// getValueAsListOfDefs - This method looks up the specified field and returns /// its value as a vector of records, aborting if the field does not exist /// or if the value is not the right type. /// std::vector Record::getValueAsListOfDefs(StringRef FieldName) const { ListInit *List = getValueAsListInit(FieldName); std::vector Defs; for (Init *I : List->getValues()) { if (DefInit *DI = dyn_cast(I)) Defs.push_back(DI->getDef()); else PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' list is not entirely DefInit!"); } return Defs; } /// getValueAsInt - This method looks up the specified field and returns its /// value as an int64_t, aborting if the field does not exist or if the value /// is not the right type. /// int64_t Record::getValueAsInt(StringRef FieldName) const { const RecordVal *R = getValue(FieldName); if (!R || !R->getValue()) PrintFatalError(getLoc(), "Record `" + getName() + "' does not have a field named `" + FieldName + "'!\n"); if (IntInit *II = dyn_cast(R->getValue())) return II->getValue(); PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have an int initializer!"); } /// getValueAsListOfInts - This method looks up the specified field and returns /// its value as a vector of integers, aborting if the field does not exist or /// if the value is not the right type. /// std::vector Record::getValueAsListOfInts(StringRef FieldName) const { ListInit *List = getValueAsListInit(FieldName); std::vector Ints; for (Init *I : List->getValues()) { if (IntInit *II = dyn_cast(I)) Ints.push_back(II->getValue()); else PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have a list of ints initializer!"); } return Ints; } /// getValueAsListOfStrings - This method looks up the specified field and /// returns its value as a vector of strings, aborting if the field does not /// exist or if the value is not the right type. /// std::vector Record::getValueAsListOfStrings(StringRef FieldName) const { ListInit *List = getValueAsListInit(FieldName); std::vector Strings; for (Init *I : List->getValues()) { if (StringInit *SI = dyn_cast(I)) Strings.push_back(SI->getValue()); else PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have a list of strings initializer!"); } return Strings; } /// getValueAsDef - This method looks up the specified field and returns its /// value as a Record, aborting if the field does not exist or if the value /// is not the right type. /// Record *Record::getValueAsDef(StringRef FieldName) const { const RecordVal *R = getValue(FieldName); if (!R || !R->getValue()) PrintFatalError(getLoc(), "Record `" + getName() + "' does not have a field named `" + FieldName + "'!\n"); if (DefInit *DI = dyn_cast(R->getValue())) return DI->getDef(); PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have a def initializer!"); } /// getValueAsBit - This method looks up the specified field and returns its /// value as a bit, aborting if the field does not exist or if the value is /// not the right type. /// bool Record::getValueAsBit(StringRef FieldName) const { const RecordVal *R = getValue(FieldName); if (!R || !R->getValue()) PrintFatalError(getLoc(), "Record `" + getName() + "' does not have a field named `" + FieldName + "'!\n"); if (BitInit *BI = dyn_cast(R->getValue())) return BI->getValue(); PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have a bit initializer!"); } bool Record::getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const { const RecordVal *R = getValue(FieldName); if (!R || !R->getValue()) PrintFatalError(getLoc(), "Record `" + getName() + "' does not have a field named `" + FieldName.str() + "'!\n"); if (isa(R->getValue())) { Unset = true; return false; } Unset = false; if (BitInit *BI = dyn_cast(R->getValue())) return BI->getValue(); PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have a bit initializer!"); } /// getValueAsDag - This method looks up the specified field and returns its /// value as an Dag, aborting if the field does not exist or if the value is /// not the right type. /// DagInit *Record::getValueAsDag(StringRef FieldName) const { const RecordVal *R = getValue(FieldName); if (!R || !R->getValue()) PrintFatalError(getLoc(), "Record `" + getName() + "' does not have a field named `" + FieldName + "'!\n"); if (DagInit *DI = dyn_cast(R->getValue())) return DI; PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName + "' does not have a dag initializer!"); } void MultiClass::dump() const { errs() << "Record:\n"; Rec.dump(); errs() << "Defs:\n"; for (const auto &Proto : DefPrototypes) Proto->dump(); } void RecordKeeper::dump() const { errs() << *this; } raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) { OS << "------------- Classes -----------------\n"; for (const auto &C : RK.getClasses()) OS << "class " << *C.second; OS << "------------- Defs -----------------\n"; for (const auto &D : RK.getDefs()) OS << "def " << *D.second; return OS; } /// getAllDerivedDefinitions - This method returns all concrete definitions /// that derive from the specified class name. If a class with the specified /// name does not exist, an error is printed and true is returned. std::vector RecordKeeper::getAllDerivedDefinitions(const std::string &ClassName) const { Record *Class = getClass(ClassName); if (!Class) PrintFatalError("ERROR: Couldn't find the `" + ClassName + "' class!\n"); std::vector Defs; for (const auto &D : getDefs()) if (D.second->isSubClassOf(Class)) Defs.push_back(D.second.get()); return Defs; } /// QualifyName - Return an Init with a qualifier prefix referring /// to CurRec's name. Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass, Init *Name, const std::string &Scoper) { RecTy *Type = cast(Name)->getType(); BinOpInit *NewName = BinOpInit::get(BinOpInit::STRCONCAT, BinOpInit::get(BinOpInit::STRCONCAT, CurRec.getNameInit(), StringInit::get(Scoper), Type)->Fold(&CurRec, CurMultiClass), Name, Type); if (CurMultiClass && Scoper != "::") { NewName = BinOpInit::get(BinOpInit::STRCONCAT, BinOpInit::get(BinOpInit::STRCONCAT, CurMultiClass->Rec.getNameInit(), StringInit::get("::"), Type)->Fold(&CurRec, CurMultiClass), NewName->Fold(&CurRec, CurMultiClass), Type); } return NewName->Fold(&CurRec, CurMultiClass); } /// QualifyName - Return an Init with a qualifier prefix referring /// to CurRec's name. Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass, const std::string &Name, const std::string &Scoper) { return QualifyName(CurRec, CurMultiClass, StringInit::get(Name), Scoper); }