
Using Off-the-Shelf Exception Support Components
in C++ Verification

Vladimír Štill Petr Ročkai Jiří Barnat

Masaryk University

Brno, Czech Republic

26th July 2017

1 / 10

DIVINE – Verification of C++ Programs

DIVINE is a tool for testing and verification of C/C++ programs

memory safety, assertion safety, parallelism errors
easy error injection
full support for C and C++, partial support for POSIX
using clang/LLVM compiler infrastructure

Contribution of this Work

full support for C++ exceptions
with minimal changes to the verification core of DIVINE
re-using existing implementation of exception matching in the C++
runtime

2 / 10

DIVINE – Verification of C++ Programs

DIVINE is a tool for testing and verification of C/C++ programs

memory safety, assertion safety, parallelism errors
easy error injection
full support for C and C++, partial support for POSIX
using clang/LLVM compiler infrastructure

Contribution of this Work

full support for C++ exceptions
with minimal changes to the verification core of DIVINE
re-using existing implementation of exception matching in the C++
runtime

2 / 10

DIVINE – Verification of C++ Programs

C++ code property and options

compiler

runtime

LLVM IR instrumentation DiVM IR

verification core

ValidCounterexample

DIVINE

3 / 10

Motivation

C++ exceptions

ubiquitous in real-world C++
disabling exceptions can change behaviour (new)
runtime support required, cannot be handled by the compiler itself

Off-the-Self Components

using LLVM and clang helps a lot for C/C++ support
DIVINE also re-uses C and C++ standard libraries
more precise verification then with re-implementation of C++ support

exceptions support is complex
re-implementation would risk imprecisions, would be large, or require
changes to the verification core

4 / 10

Motivation

C++ exceptions

ubiquitous in real-world C++
disabling exceptions can change behaviour (new)
runtime support required, cannot be handled by the compiler itself

Off-the-Self Components

using LLVM and clang helps a lot for C/C++ support
DIVINE also re-uses C and C++ standard libraries
more precise verification then with re-implementation of C++ support

exceptions support is complex
re-implementation would risk imprecisions, would be large, or require
changes to the verification core

4 / 10

Motivation

C++ exceptions

ubiquitous in real-world C++
disabling exceptions can change behaviour (new)
runtime support required, cannot be handled by the compiler itself

Off-the-Self Components

using LLVM and clang helps a lot for C/C++ support
DIVINE also re-uses C and C++ standard libraries
more precise verification then with re-implementation of C++ support

exceptions support is complex
re-implementation would risk imprecisions, would be large, or require
changes to the verification core

4 / 10

How Exceptions Work

1 X::~X() { }
2 void g() {
3 throw std::exception();
4 }
5 void f() {
6 X x;
7 g();
8 }
9

10 int main() {
11 try {
12 f();
13 } catch (...) {
14 /* ... */
15 }
16 }

main:12

5 / 10

How Exceptions Work

1 X::~X() { }
2 void g() {
3 throw std::exception();
4 }
5 void f() {
6 X x;
7 g();
8 }
9

10 int main() {
11 try {
12 f();
13 } catch (...) {
14 /* ... */
15 }
16 }

main:12

f:6

5 / 10

How Exceptions Work

1 X::~X() { }
2 void g() {
3 throw std::exception();
4 }
5 void f() {
6 X x;
7 g();
8 }
9

10 int main() {
11 try {
12 f();
13 } catch (...) {
14 /* ... */
15 }
16 }

main:12

f:7

5 / 10

How Exceptions Work

1 X::~X() { }
2 void g() {
3 throw std::exception();
4 }
5 void f() {
6 X x;
7 g();
8 }
9

10 int main() {
11 try {
12 f();
13 } catch (...) {
14 /* ... */
15 }
16 }

main:12

f:7

g:3

5 / 10

How Exceptions Work

1 X::~X() { }
2 void g() {
3 throw std::exception();
4 }
5 void f() {
6 X x;
7 g();
8 }
9

10 int main() {
11 try {
12 f();
13 } catch (...) {
14 /* ... */
15 }
16 }

main:12

f:7

g:3

throw

unwinding

5 / 10

How Exceptions Work

1 X::~X() { }
2 void g() {
3 throw std::exception();
4 }
5 void f() {
6 X x;
7 g();
8 }
9

10 int main() {
11 try {
12 f();
13 } catch (...) {
14 /* ... */
15 }
16 }

main:12

f:8 (cleanup)

unwinding

5 / 10

How Exceptions Work

1 X::~X() { }
2 void g() {
3 throw std::exception();
4 }
5 void f() {
6 X x;
7 g();
8 }
9

10 int main() {
11 try {
12 f();
13 } catch (...) {
14 /* ... */
15 }
16 }

main:12

f:8 (cleanup)

X::~X:1

unwinding

5 / 10

How Exceptions Work

1 X::~X() { }
2 void g() {
3 throw std::exception();
4 }
5 void f() {
6 X x;
7 g();
8 }
9

10 int main() {
11 try {
12 f();
13 } catch (...) {
14 /* ... */
15 }
16 }

main:14

5 / 10

Running C++ Program

C++ code

clang bitcode LLVM + linker

libc++abilibc++ libunwind

Executable

Machine + OS

the code is compiled and linked to the standard library (libc++),
runtime library (libc++abi), and the unwinder (libunwind)

the runtime library depends on the unwinder which depend on the
machine and OS
green components are re-used in DIVINE

6 / 10

Running C++ Program

C++ code

clang bitcode LLVM + linker

libc++abilibc++ libunwind

Executable

Machine + OS

the code is compiled and linked to the standard library (libc++),
runtime library (libc++abi), and the unwinder (libunwind)
the runtime library depends on the unwinder which depend on the
machine and OS

green components are re-used in DIVINE

6 / 10

Running C++ Program

C++ code

clang bitcode LLVM + linker

libc++abilibc++ libunwind

Executable

Machine + OS

the code is compiled and linked to the standard library (libc++),
runtime library (libc++abi), and the unwinder (libunwind)
the runtime library depends on the unwinder which depend on the
machine and OS
green components are re-used in DIVINE

6 / 10

Analyzing C++ Program with DIVINE

C++ code

clang bitcode LLVM instrumentation

libc++abilibc++ libunwind

bitcode

DiVM

DIVINE/DiVM-specific components

LLVM-based preprocessing

DiVM-based implementation of libunwind

approximately 700 lines of new modular C++ code

7 / 10

Analyzing C++ Program with DIVINE

C++ code

clang bitcode LLVM instrumentation

libc++abilibc++ libunwind

bitcode

DiVM

DIVINE/DiVM-specific components

LLVM-based preprocessing
DiVM-based implementation of libunwind

approximately 700 lines of new modular C++ code

7 / 10

Analyzing C++ Program with DIVINE

C++ code

clang bitcode LLVM instrumentation

libc++abilibc++ libunwind

bitcode

DiVM

DIVINE/DiVM-specific components

LLVM-based preprocessing
DiVM-based implementation of libunwind

approximately 700 lines of new modular C++ code

7 / 10

LLVM Transformation

exceptions require metadata about stack frames, catch blocks and
cleanups for destructors

normally describe the machine code
DIVINE needs metadata for LLVM bitcode

metadata format depends on the implementation of the C++ runtime
library
output of the transformation is LLVM bitcode with additional
metadata stored in global constants
C++ specific encoding of catch and cleanup locations

8 / 10

LLVM Transformation

exceptions require metadata about stack frames, catch blocks and
cleanups for destructors

normally describe the machine code
DIVINE needs metadata for LLVM bitcode

metadata format depends on the implementation of the C++ runtime
library

output of the transformation is LLVM bitcode with additional
metadata stored in global constants
C++ specific encoding of catch and cleanup locations

8 / 10

LLVM Transformation

exceptions require metadata about stack frames, catch blocks and
cleanups for destructors

normally describe the machine code
DIVINE needs metadata for LLVM bitcode

metadata format depends on the implementation of the C++ runtime
library
output of the transformation is LLVM bitcode with additional
metadata stored in global constants
C++ specific encoding of catch and cleanup locations

8 / 10

The Unwinder (libunwind)

used to manipulate the execution stack
depends on the platform, calling conventions (e.g. Linux on x86)

new unwinder for DiVM
uses metadata from the transformation
provides metadata for the libc++abi callbacks which search for the
location to restore control flow to
would also work with other languages

9 / 10

The Unwinder (libunwind)

used to manipulate the execution stack
depends on the platform, calling conventions (e.g. Linux on x86)
new unwinder for DiVM

uses metadata from the transformation
provides metadata for the libc++abi callbacks which search for the
location to restore control flow to
would also work with other languages

9 / 10

The Unwinder (libunwind)

used to manipulate the execution stack
depends on the platform, calling conventions (e.g. Linux on x86)
new unwinder for DiVM
uses metadata from the transformation
provides metadata for the libc++abi callbacks which search for the
location to restore control flow to

would also work with other languages

9 / 10

The Unwinder (libunwind)

used to manipulate the execution stack
depends on the platform, calling conventions (e.g. Linux on x86)
new unwinder for DiVM
uses metadata from the transformation
provides metadata for the libc++abi callbacks which search for the
location to restore control flow to
would also work with other languages

9 / 10

Evaluation & Conclusion

reusable and modular implementation of C++ exceptions
substantial improvement in verification fidelity

minimal investment: ∼ 700 lines of code
minimal overhead: 2:6% time overhead compared to an older style of
implementation which required changes to the verification core

divine.fi.muni.cz
paradise-fi/divine on GitHub

more data & code:
divine.fi.muni.cz/2017/exceptions

10 / 10

https://divine.fi.muni.cz
https://github.com/paradise-fi/divine
https://divine.fi.muni.cz/2017/exceptions

Evaluation & Conclusion

reusable and modular implementation of C++ exceptions
substantial improvement in verification fidelity
minimal investment: ∼ 700 lines of code

minimal overhead: 2:6% time overhead compared to an older style of
implementation which required changes to the verification core

divine.fi.muni.cz
paradise-fi/divine on GitHub

more data & code:
divine.fi.muni.cz/2017/exceptions

10 / 10

https://divine.fi.muni.cz
https://github.com/paradise-fi/divine
https://divine.fi.muni.cz/2017/exceptions

Evaluation & Conclusion

reusable and modular implementation of C++ exceptions
substantial improvement in verification fidelity
minimal investment: ∼ 700 lines of code
minimal overhead: 2:6% time overhead compared to an older style of
implementation which required changes to the verification core

divine.fi.muni.cz
paradise-fi/divine on GitHub

more data & code:
divine.fi.muni.cz/2017/exceptions

10 / 10

https://divine.fi.muni.cz
https://github.com/paradise-fi/divine
https://divine.fi.muni.cz/2017/exceptions

