
A Simulator for LLVM Bitcode?

Petr Ročkai and Jǐŕı Barnat

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{xrockai,barnat}@fi.muni.cz

Abstract. In this paper, we introduce an interactive simulator for pro-
grams in the form of LLVM bitcode. The main features of the simulator
include precise control over thread scheduling, automatic checkpoints
and reverse stepping, support for source-level information about func-
tions and variables in C and C++ programs and structured heap visu-
alisation. Additionally, the simulator is compatible with DiVM (DIVINE
VM) hypercalls, which makes it possible to load, simulate and analyse
counterexamples from an existing model checker.

1 Introduction

Verification tools are increasingly adopting LLVM bitcode as their input language
of choice. A frequent reason for implementing LLVM-based model checkers (and
other analysis tools) is that they can leverage existing compiler front ends, CLang
in particular. This in turn makes it possible to use those model checkers on C
and even C++ programs without dealing with the irregularity and complex-
ity of these programming languages. Clearly, this tremendously improves the
usefulness of any such tool, since C and C++ are widespread implementation
languages, and implementation-level model checking is naturally desirable for
many reasons.

An additional benefit of the standardisation around the LLVM IR [9] (inter-
mediate representation) is that an ecosystem of tools is emerging, where those
tools can cooperate through the common input format. Analysis and model
checking tools can be used to ascertain correctness of the program with respect
to a specification; however, when they find that there is a violation, printing
“property violated” is rarely enough. For the result to be genuinely useful, it
must somehow convey how the specification is violated to the user, so they can
analyse the problem and fix their program. One option is to print a counterexam-
ple trace, which describes the violating execution of the program. In traditional
model checkers, for example, it is often sufficient to provide a textual description
of the entire execution, since the input model is usually small and its states and
transitions can be described compactly.

? This work has been partially supported by the Czech Science Foundation grant
No. 15-08772S and by Red Hat, Inc.

More advanced tools, however, provide a simulator, an interactive tool for
stepping through the counterexample, where the user can highlight and investi-
gate particular sections of the counterexample in more detail, and fast-forward
through other, uninteresting parts. A simulator is often also useful as an ex-
ploratory tool: the behaviour of the system can be explored by the user, manually
navigating through its state space and inspecting variables along the way.

In case of C and C++ programs, it is vitally important that counterexamples
can be inspected interactively, since the state of a program is a very complicated
structure, often comprising hundreds of kilobytes of structured data. Moreover,
violating executions can be quite long, easily hundreds or thousands of distinct
states, with non-trivial relationships.

The main contribution of this paper is a reusable simulator for C and C++
code. Since it builds on the LLVM intermediate language, it can be used by
multiple different tools which produce counterexamples or otherwise work with
LLVM bitcode, and is easily adapted to new high-level languages with LLVM
toolchains (like Objective C or Rust). To the best of our knowledge, this work is
unique in the sense that no other simulator which would handle C++ programs is
available, and simulators which handle C code typically miss important features.
Moreover, the simulator is also reusable in the sense that, while originating from
the DIVINE tool set, it can be used standalone, or possibly in combination with
other analysis and verification tools.

From a more theoretical standpoint, the debug graph (described in Sec-
tion 3.4) represents a new approach to reconciling low-level data as it exists dur-
ing program runtime, with the high-level structure declared in the source code.
Another new idea is to build a simulator based on compiled code (as opposed to
interpreting the source code directly) and leveraging existing debugger-focused
infrastructure (debug metadata in particular), making the implementation es-
pecially simple and compact.

The rest of this paper is structured as follows: in Section 2 we discuss related
work and compare our approach to existing tools. Section 3 describes the LLVM
bitcode as it is used by the simulator, how the simulator represents the program
state and also introduces the debug graph. Section 4 mentions some of the more
important implementation details. The focus of Section 5 is presentation of the
data aspects of a program, while Section 6 concerns the program’s state space.
Section 7 wraps the paper up. Additional resources (mainly evaluation-related)
are available online1.

2 Related Work

It is a well-established fact that isolating some bad behaviour of a program in a
test is, in itself, not sufficient to easily explain the cause of the problem [1]. The
situation is similar in model checking, where a counterexample trace can often
be extracted easily enough, but it may not contain sufficient detail, or conversely,

1 https://divine.fi.muni.cz/2017/sim/

may swamp the user in large amount of irrelevant data [13]. The problem also
goes beyond the software realm, as witnessed in, for instance, verification of
MATLAB Simulink designs [3].

There are basically two orthogonal approaches that attempt to resolve these
problems. One is to locate, or at least narrow down, the error automatically, in
the hopes that from such a narrowed-down trace, the user will be able to under-
stand the problem by inspection of the source code. In the domain of software
verification, this approach is pursued by many tools: counterexamples for viola-
tion of temporal properties, generated by the software model checker SLAM [2],
for instance, can be analysed and reduced to only cover a small number of source
lines, in which the root cause of the error is most likely to lie [1]. An approach
to succinctly describe assertion violations (violations of safety properties), based
on automated dependency analysis, has also been proposed [4]. Finally, coun-
terexamples from CBMC can be post-processed, in an approach similar to those
mentioned above, with a tool called explain [6], in this case based on distance
metrics.

Unfortunately, even if the problem area is only a few lines of source code,
it can be very hard to understand the dynamic behaviour during the erroneous
execution. The problem gets much worse when the program in question is par-
allel, because reasoning about the behaviour of such programs is much harder
than it is in the sequential case.

To make understanding and fixing problems in programs (or complex systems
in general) easier, many formal verification tools come equipped with a simulator.
For instance the UPPAAL tool for analysis of real-time systems provides an
integrated graphical simulator [5]. Another example of a formal analysis tool with
a graphical simulator would be LTSA [7], based on labelled transition systems
as its modelling formalism.

Like many verification tools, the valgrind [8] run-time program analyser
is primarily non-interactive, but it provides an interface to allow interactive
exploration of program state upon encountering a problem.

Our simulator is based on DiVM [10], an extension of the LLVM language
that allows verification and analysis of a wider class of programs (a more detailed
description of the DiVM extensions is given in Section 3.1). Since pure LLVM is
retained as a subset of the DiVM language, the simulator can also transparently
work with pure LLVM bitcode.

Besides its relationship to various simulators for modelling and design lan-
guages, a simulator for LLVM bitcode is, through its application to code written
in standard programming languages like C, related to standard symbolic debug-
gers. A ubiquitous example on POSIX systems is gdb, the GNU debugger [11].
Unlike a simulator, which interprets the program, a debugger instead attaches
to a standard process executing in its native environment.

2.1 Comparison to Symbolic Debuggers

As outlined above, simulators and debuggers substantially differ in their mode
of operation and this leads to very different overall trade-offs. For example, a

simulator is much more resilient to memory corruption than a debugger, because
the latter has only limited control over the process it is attached to. Both types
of tools rely on understanding the execution stack of the program; however, if
the program corrupts its execution stack, a debugger must rely on imprecise
heuristics to detect this fact and risks providing wrong and possibly mislead-
ing information to the user. The simulator can, on the other hand, quite easily
prevent such corruption from happening, since it simulates the program at in-
struction level, and can institute much stricter memory protections.

On the other hand, the situation is reversed when the program interacts with
its surroundings through the operating system. In a debugger, such communi-
cation comes about transparently from the fact that the program is a standard
process in the operating system and has all the standard facilities at its disposal.
In a simulator, communication with the operating system must be specifically
relayed and due to imperfections in this translation, some programs may misbe-
have in the simulation.

Finally, the simulator has a substantial advantage in two additional areas:
first, a simulator can very precisely and quite comfortably control thread inter-
leaving. This allows analysis of subtle timing-dependent issues in the program.
Second, since a simulator has a complete representation of the program’s state
under its control, it can quite easily move backwards in time or compare vari-
able values from different points in the execution history. While both scheduler
locking and reversible debugging exist to a certain degree in traditional debug-
gers [12], those features are very hard to implement and usually quite limited in
their abilities.

3 LLVM Bitcode

The LLVM bitcode (or intermediate representation) [9] is an assembly-like lan-
guage primarily aimed at optimisation and analysis. The idea is that LLVM-based
analysis and optimisation code can be shared by many different compilers: a com-
piler front end builds simple LLVM IR corresponding to its input and delegates
all further optimisation and native code generation to a common back end. This
architecture is quite common in other compilers: as an example, GCC contains
a number of different front ends that share infrastructure and code generation.
The major innovation of LLVM is that the language on which all the common
middle and back end code operates is exposed and available to 3rd-party tools.
It is also quite well documented and LLVM provides stand-alone tools to work
with both bitcode and textual form of this intermediate representation.

From a language viewpoint, LLVM IR is in a partial SSA form (single static
assignment) with explicit basic blocks. Each basic block is made up of instruc-
tions, the last of which is a terminator. The terminator instruction encodes
relationships between basic blocks, which form an explicit control flow graph.
An example of a terminator instruction would be a conditional or an uncondi-
tional branch or a ret. Such instructions either transfer control to another basic
block of the same function or stop execution of the function altogether.

Besides explicit control flow, LLVM also strives to make much of the data
flow explicit, taking advantage of partial SSA for this reason. It is, in general,
impossible to convert entire programs to a full SSA form; however, especially
within a single function, it is possible to convert a significant portion of code.
The SSA-form values are called registers in LLVM and only a few instructions
can “lift” values from memory into registers and put them back again (most
importantly load and store, respectively, plus a handful of atomic memory
access instructions).

From the point of view of a simulator, memory and registers are somewhat
distinct entities, both of which can hold values. Memory is completely unstruc-
tured at the LLVM level, the only assumption is that it is byte-addressed (en-
dianity of multi-byte values is configurable, but uniform). Traditional C stack
is, however, not required. Instead, all “local” memory is obtained via a special
instruction, alloca, and treated like any other memory (memory obtained by
alloca is assumed to be freed automatically when the function that requested
the memory exits, via ret or any other way, e.g. due to stack unwinding during
an exception propagation). Therefore, a C-style stack is a legitimate way to im-
plement alloca, but not the most convenient in a simulator (for more details
on how memory is handled in our simulator, see Section 3.2).

3.1 Verification Extensions

Unfortunately, LLVM bitcode alone is not sufficiently expressive to describe real
programs: most importantly, it is not possible to encode interaction with the op-
erating system into LLVM instructions. When LLVM is used as an intermediate
step in a compiler, the lowest level of the user side of the system call mechanism
is usually provided as an external, platform-specific function with a standard C
calling convention. This function is usually implemented in the platform’s as-
sembly language. The system call interface, in turn, serves as a gateway between
the program and the operating system, unlocking OS-specific functionality to
the program. An important point is that the gateway function itself cannot be
implemented in portable LLVM. Moreover, while large portions of the kernel are
often implemented in C or a similar portable language, they are also tightly
coupled to the underlying hardware platform.

The language of “real” programs is, therefore, LLVM enriched with system
calls, which are provided by the operating system kernel. For verification pur-
poses, however, this language is quite unsuitable: the list of system calls is long
(well over 100 functions on many systems) and exposes implementation details
of the particular kernel. Moreover, re-implementing a complete operating sys-
tem inside every LLVM analysis tool is wasteful. To reduce this problem, a much
smaller set of requisite primitives was proposed in [10] (henceforth, we will refer
to this enriched language as DiVM). Since for model checking and simulation
purposes, the program needs to be isolated from the outside world, we can skip
most of the complexity of an operating system kernel – communication with
hardware in particular. Therefore, it is possible to implement a small, isolated
operating system in the DiVM language alone. One such operating system is

DiOS – the core OS is about 1500 lines of C++, with additional 5000 lines of
code providing POSIX-compatible file system and socket interfaces.

Thanks to its support for the DiVM language, our simulator can transparently
load programs which are linked to DiOS and its libc implementation. Since a
program compiled into the DiVM language is fully isolated from any environment
effects, it can be simulated just like a pure LLVM program could be.

3.2 Program Memory

Internally, the simulator uses DiVM to evaluate LLVM bitcode, and therefore,
how memory is represented in the simulator is directly inherited from DiVM.
This means that we can take advantage of the fact that DiVM tracks each object
stored in memory separately, and also keeps track of relationships (pointers)
between such objects.2 This way, the simulator precisely knows which words
stored in memory are pointers and the exact bounds of each object in memory.

Moreover, DiVM can efficiently store multiple snapshots of the entire address
space of the program, both in terms of space (most of the actual storage is
shared between such snapshots) and time (taking a snapshot needs time roughly
proportional to the total size of modified objects since the last snapshot). Once a
snapshot is taken, it is preserved unmodified, regardless of the future behaviour
of the program (that is, it becomes persistent).

The execution stack of a LLVM program consists of activation frames, one
for each active procedure call. In DiVM, activation frames are separate memory
objects. Moreover, each memory-stored local variable (i.e. those represented by
alloca instructions) is again represented by a distinct memory object. Each
frame object contains 2 pointers in its header (one points at the currently exe-
cuting instruction, the other to the parent frame). Besides the header, the rest
of the object is split into slots, where each slot corresponds to a single LLVM
register. The correspondence between slots and LLVM registers is maintained by
DiVM and is available to the simulator.

Together, those features of DiVM make it very easy to access the program
state in a highly structured fashion. When compared to a traditional debugger,
which must work with nearly unstructured memory space, the information our
simulator can provide to the user is simultaneously easier to obtain and more
detailed and reliable. Finally, since DiVM strictly enforces object boundaries,
both the control stack and heap structure in our simulator are very well protected
from overflows and other memory corruption bugs in the program. Therefore,
the simulated program cannot accidentally destroy information which is vital for
the functioning of the simulator, like all too often happens in debuggers.

3.3 Relating Bitcode to Source Code

In native code debuggers, the relationship between the binary and the original
source code is often not quite obvious. For this reason, in addition to the exe-
cutable binary, the compiler emits metadata which describe these relationships.

2 How this is achieved is described in more detail in [10].

For instance, it attaches a source code location (filename and line number) to
each machine instruction. This way, when the debugger executes an instruction,
it can display the relevant piece of source code. Likewise, it can analyse the ex-
ecution stack to discover how the currently executing function was called, and
display a backtrace consisting not only of function names, but also source code
lines. This is important whenever a given function contains two similar calls.

struct Point { float x, y; };

struct Circle
{

Point center;
float radius;

};

Circle c = {
.center = { .x = 0, .y = 0.5 },
.radius = 7

};

binary: 000000000000003f0000e040
.center:

type: Point
.x:

type: float
value: 0

.y:
type: float
value: 0.5

.radius:
type: float
value: 7

Fig. 1. An example C struct type and the corresponding representations: binary and
structured (the latter is only possible with debug metadata).

The situation is analogous in LLVM-based tools. The compiler front-ends are
therefore encouraged to generate debuginfo metadata (in a form that reflects the
structure of the DWARF debug information format, which is widely used by na-
tive source-level debuggers). Besides the vitally important source code locations,
the metadata describe local and global variables and their types (including user
defined types, like struct and union types in C). This in turn enables the de-
bugger to display the data in a structured way, resembling the structure which
exists in the source code. For example, struct types in C have named fields –
the debugger can use the debug metadata to discover the relationship between
offsets in the binary representation of the value with the source-level field names
(an example is shown in Figure 1).

3.4 Debug Graph

The memory graph maintained by DiVM is a good basis for presenting the
program state to the user, but on its own is insufficient: the only type information
it contains is whether a particular piece of memory holds a pointer or not.
Therefore, we overlay another graph structure on top of the memory (heap)
graph, with richer type information based on debuginfo metadata (more details
on how this graph is computed will be presented in Section 5). The nodes in the
debug graph may be further structured: they have attributes (atomic properties,
such as an integer or floating point value), components and relations. While both
components and relations are again nodes of the graph, they crucially differ in

how they relate to the underlying memory: components of a debug node occupy
the same memory as their parent node; for example, a debug node which consists
of a struct C type will contain a component for each field of the struct. In
contrast, relations of a debug node correspond to the pointers embedded in its
memory, i.e. a relation always corresponds to a pointer stored in memory (it
may, however, point back at the same object it is embedded in).

Since memory objects are persistent in DiVM (cf. Section 3.2), so is the debug
graph in our simulator. This means that objects (debug nodes) are immutable,
i.e. they always come from a snapshot of the memory of the program. Since
it would be too expensive to make a copy of the entire memory after every
instruction, such snapshots are implemented via copy-on-write semantics.

4 Implementation

The ideas presented in this paper are implemented in the simulator component of
DIVINE 4, which is available as divine sim. All relevant source code is available
online3, under a permissive open source licence. Additional details about the
user interface and user interaction in particular can be found in the DIVINE 4
manual4.

The simulator currently provides a command-driven interface, similar to, for
example, gdb. The data structures and most of the code, however, are inde-
pendent of a particular interface. The command-line parser and other interface-
specific code entails approximately 800 lines of C++. The interface-agnostic core
could be therefore re-used to build a graphical user interface for the simulator.

The current command interface uses meta variables extensively: each such
meta variable holds a reference to a single debug node (cf. Section 3.4). There
are two basic types of meta variables, static and dynamic.

Static variables will always point to the same debug node, even as the pro-
gram executes and the content of its memory changes. Since objects in the DiVM
memory are persistent (not mutable), this type of variable simply points to such
a persistent, immutable object. Static meta variables have names starting with
a # sign, e.g. #start.

Dynamic variables reflect the current state of the program at any given time.
The debug nodes referenced by those variables are refreshed every time the
program mutates its memory, so that they always point to an up-to-date copy
of the persistent memory object (in other words, they always refer to the latest
memory snapshot). Those variables are prefixed with a $ sign, e.g. $frame.

4.1 High-Level Languages

Our simulator design is, to a large degree, independent of the particular high-
level language in which the simulated program was developed. The structure

3 https://divine.fi.muni.cz/download.html
4 https://divine.fi.muni.cz/manual.html

of the program is described in the debug info metadata in sufficient detail to
provide precise and readable information to the user. This is in contrast to tools
like gdb and lldb which mostly rely on evaluating C and/or C++ statements
for presenting the program data. That is, the user is allowed to type in a C or
C++ expression to be evaluated and the result displayed. The major downside
is that if the high-level language support is incomplete (like it is the case with
C++ support in gdb), it becomes much harder to print certain values without
resorting to very low-level means (printing bytes at particular addresses). The
debug graph implemented in our simulator (see Section 3.4) is language-neutral,
and hence the features derived from this graph are independent of the high-level
language as well.

Of course, the amount of implementation work required to support a partic-
ular high-level language in a debugger can be prohibitive. We hypothesise that
this is the primary reason why interactive simulators (and debuggers in general)
are so scarce. Therefore, we consider the debug graph to be an important con-
tribution, since it can be built from LLVM debug info in a comparatively small
amount of code, but nonetheless provides a very convenient interface.

5 Working with Data

Providing facilities for inspecting data of the program is one of the main func-
tions of an interactive debugger or a simulator. This data can be presented in
different forms and from different starting points. In our simulator, heap memory
is structured explicitly as a graph, and we can leverage this to greatly improve
presentation of data. An example of such a graph is shown in Figure 2. Each
node of the graph corresponds to a single in-memory object, which can have
(and often has) additional internal structure. The internal structure reflects the
C/C++ type which is deduced from the types of pointers pointing at this par-
ticular node.

5.1 Starting Points

In DiVM, there is always a single distinguished object in the heap, from which
the entire heap is reachable, including the stacks of all threads and any kernel
data structures. This root object is made available to the user as $state. In most
cases, however, it is better to take a more local view: the currently executing
stack frame, for instance, is available as $frame. Finally, there is the $globals

meta variable that holds the debug node associated with the memory object
in which all global variables of the currently executing process reside. Objects
which represent stack frames and global variables consist of slots which in turn
contain values. Values in those slots either correspond to current values of local
source-level variables, or contain pointers to variables held in memory. In both
cases, a component debug node is created, based on debug information generated
by the compiler. These components then form a basis for presenting the data to
the user.

5.2 Typing the Heap

In all cases, the type information available for the starting point is used to
derive type information for the entire heap reachable from that starting point.
For frames, we can deduce which function the frame belongs to, and obtain
information about the frame layout used by that function. That is, for each LLVM
register, we obtain a corresponding C type, which is usually either a primitive
type or a pointer. If the type is a pointer and it is not null or otherwise invalid,
there is an edge in the graph of the heap corresponding to this pointer. The
object at the other end of the edge is then assigned the base type of the pointer,
that is, type of a value obtained by dereferencing the pointer. This procedure
is then repeated recursively until all objects where type information exists are
assigned a type.

Of course, there is a potential for ambiguity: not all C/C++ programs are
consistently typed, therefore, multiple edges pointing at a single object can each
carry a different type. In this case, we assign the first type which reaches the
object – for most programs, this is entirely satisfactory. It is, however, also
possible to collect all types and construct a union type out of those.

(elided)

(elided)

scheduler:deref

(elided)

fault:deref

attributes:
 address: heap* 8a723d97 0+0
 type: (VFS = VFS)
 shared: 0
._manager:
 type: Manager*
 value: [heap* 684802a5 0 ddp]
 related: [deref]

vfs:deref

attributes:
 address: heap* 4 0+0
 value: [i8 0 d]
 shared: 1

globals:deref

(elided)

threads._storage.[0]:deref

attributes:
 address: heap* 14f75f5a 0+0
 type: _VM_Frame
 shared: 0
 pc: code* 142 7
 insn: %07 = call [code* 1 0 ddp]
 location: /divine/src/dios/core/main.cpp:152
 symbol: _start
.l:
 type: int
 value: [i32 0 d]
 scope: _start
.argc:
 type: int
 value: [i32 1 d]
 scope: _start

(elided)

_frame:deref

(elided)

_tls:deref

attributes:
 address: heap* fa939251 0+0
 type: char*
 string: "test/c/1.assert.c"
 value: [heap* 51741c6 0 ddp]
 shared: 0
related: [deref]

argv:deref

attributes:
 address: heap* b110917c 0+0
 type: char*
 value: [const* 0 0 ddp]
 shared: 1
related: [deref]

envp:deref

attributes:
 address: heap* 51741c6 0+0
 type: char
 value: [i8 116 d]
 shared: 0

deref

(elided)

_manager:deref

attributes:
 address: heap* 876dd734 18+0
 type: (value_type = shared_ptr<__dios::fs::INode>)
 shared: 0
related: [16]

_standardIO.__elems_:deref

Fig. 2. An example heap structure of a simple program. The depicted graph was ob-
tained directly from the simulator; the only change was that descriptions of some of the
nodes were elided for presentation purposes. A memory object may contain multiple
debug nodes (components), which are rendered textually.

5.3 Relating Data and Control

The control flow of a C program is reflected in the execution stack and is a
part of the program’s data. Since C and C++ are lexically scoped languages,
the variables that are currently in scope depends on which function (and pos-
sibly which block in that function) is currently executing. This is realised by
making local variables part of the execution stack: when a function is entered,
an activation frame (or activation record) is pushed onto the execution stack.
In a normal execution environment, the frame has space for CPU register spills
and for local variables which have their address taken. In DiVM, there are no
general-purpose registers as such; instead, LLVM registers are stored inside the
frame itself. Any address-taken variables are stored as separate objects (while
their address is stored in a register).

Additionally, in a typical implementation of C, the activation frame contains
a return address, which is a pointer to the call instruction that caused the
current function to execute. In DiVM, the frame instead contains a program
counter (in a real CPU, the program counter, also known as instruction pointer,
is held in a register). The program counter tells us which function, and which
instruction within that function, is currently being executed. Through debug
info (cf. Section 3.3), we can tie, to each instruction, the source code location
from which it came.

As an example of how this is used in the simulator, if the user requests to list
the source code of the currently executed function (using the source command),
the simulator examines the current active activation frame (held in the $frame

meta variable) to find the current value of the program counter. Then it proceeds
to read the corresponding debug info to obtain the source code file name, reads
the source file, finds the line corresponding to the program counter and prints
the surrounding function (example output is shown in Figure 3).

> show $frame
attributes:

address: heap* bf24efc5 0+0
shared: 0
pc: code* 1 0
location: test/c/1.assert.c:5
symbol: main

related: [caller]

> source
3 int main()
4 {

>> 5 assert(0);
6 return 0;
7 }

Fig. 3. An example interaction: listing source code.

6 Navigating the State Space

If we treat the data of a program as a spatial dimension, it is natural, then,
to treat the state space – the behaviour of program as it executes – as a time

dimension. Since the state space is a graph, the predecessors of a given state
(the path from the initial state to the “current” state – the one that is being
examined) constitute the past of the computation. The successors, on the other
hand, correspond to possible futures of the computation (since the behaviour
of the program is often non-deterministic; this is because it may depend on
unpredictable outcomes from outside its influence, which means there is more
than one possible future). In this correspondence of the state-space graph to
temporal behaviour of the program, cycles in the state space clearly correspond
to behaviours that go on forever.

In a standard debugger, time can only flow in one direction, and which of the
potential futures is realised can be influenced, but not controlled. In a simulator,
however, it is possible to both go backwards in time (rewind the program state
to some past configuration) and to pick exactly which future should be explored.
Likewise, it is entirely possible to go back in time and select a different future to
explore. These possibilities are derived mainly from the persistent and compact
memory representation (see Section 3.2).

6.1 Stepping Forward

On the other hand, the state space as explored by model checkers is often too
coarse to follow the computation in detail. The states typically correspond to
locations where threads interleave or where cycles can potentially form. At this
level, the edges in the state space correspond, approximately, to atomic actions
in the program. Even in heavily parallel programs, though, such atomic sections
will span many instructions and possibly multiple source lines. A simulator which
works at the state-space level (as is, for example, the case in DIVINE 3 and in
verification-centric tools in general) can only present computation steps at this
high level. In many cases, this is inadequate when users rely on the tool to
gain precise understanding of a particular problem in the program – that is,
the resolution provided by such a tool is insufficient and important details are
lost. In contrast, debuggers give the user very precise control over the forward
execution of the program, down to stepping one instruction at a time.

Building the simulator on top of DiVM, however, gives us execution control
at the level of individual LLVM instructions, analogous to a debugger. Out of
single instruction stepping, it is easy to build all the other execution control
functionality common in debuggers: source-line stepping – both into and over
function calls and various breakpoint types (on a source line or a on a function
entry).

6.2 Going Back

Even though the simulator executes instructions individually, it also stores a
state whenever a model checker would. For each state (or, more precisely, a
debug node corresponding to a state), a new meta variable is created, of the
form #n where n is a number. The numbers assigned to states are announced
whenever a state is encountered in the simulator (see also Figure 4), so the user

can refer to them later if needed; they can also give names to states of particular
interest.

Through this (partially constructed) state space, it is easy enough to im-
plement reversible debugging. The state of DiVM can easily be restored from
a memory snapshot, and this functionality is also exposed to the user (as the
rewind command).

In general, it is impossible to execute individual instructions backwards. How-
ever, if we can go back in ‘reasonable’ increments, such as to individual stored
states, it is easy to reach any particular earlier place in the program. Execution
happens along the edges of the state-space graph, hence if we can locate the
edge that we are interested in, it is then trivial to restore its origin state and
single-step the program forward from that point, until the desired location is
reached. This is, however, only possible because the execution in DiVM is fully
deterministic and not influenced by the environment outside of the simulator. In
other words, two ingredients are crucial to obtain simple, reversible debugging:
persistence of snapshots and fully deterministic execution.

> start
a new program state was stored as #1
active threads: [0:1]
a new program state was stored as #2
active threads: [0:1]
executing main at test/c/1.assert.c:5
> stepi

call @_PDCLIB_assert_dios
executing _PDCLIB_assert_dios
at _PDCLIB/assert.c:21

> backtrace
address: heap* fa4b97e2 0+0
pc: code* c49 0
location: _PDCLIB/assert.c:21
symbol: _PDCLIB_assert_dios

address: heap* 96c75834 0+0
pc: code* 1 1
location: test/c/1.assert.c:5
symbol: main

address: heap* 797b4e39 0+0
pc: code* 1f4 7
location: dios/core/main.cpp:173
symbol: _start

Fig. 4. Left: new states are discovered during execution of a program. Right: displaying
a backtrace.

6.3 Inspecting the Stack

As explained in Section 5.3, the control flow of a C program (or, more generally,
any LLVM program) is realised as a simple data structure stored in memory along
with other data. This data structure often represents the best means for a user
to locate themselves within the execution of a program. A so-called backtrace (or
stack trace) is a fundamental program analysis tool. A backtrace lists each acti-
vation record in the (reverse) order of activation, and constitutes a description
of a location in the computation of the program (an example is shown in Fig-
ure 4). Of course, such a description is necessarily incomplete, being much more

concise than the real representation of the program’s state. Even some control
flow information, such as which iteration of which loop is currently executing, is
elided.

6.4 Thread Interleaving

As mentioned in Section 2.1, a simulator can precisely control thread interleav-
ing. This follows from the fact it is built on the same foundation as a model
checker – since a model checker typically explores all possible interleavings, the
underlying virtual machine must provide means to switch threads at relevant
points. However, many instruction interleavings have equivalent effects, and for
this reason, allowing threads to be switched at arbitrary points is wasteful, both
in model checking and in simulation. DiVM explicitly marks points in the in-
struction stream where threads may be switched, and this restriction is carried
over to the simulator. These interrupt points are inserted in such a manner that
all possible behaviours of the program are retained in the state space. From
a simulation point of view, the downside is that the interleaving may not be
the most intuitive, but the reduction in the number of possible states generally
outweighs this, since the user needs to consider fewer runs.

6.5 Simulating Counterexamples

There are two major tasks for the simulator in the context of program analysis
and verification. The first is to allow the user to explore program behaviour and
read off details about its executions. The other is to support verification tools
which provide counterexamples to the user. As detailed in Section 2, it is a dif-
ficult task to analyse problem reports from automated analysis and verification
tools, and a simulator can be very helpful in this regard. In case of model check-
ers, the problem report contains an execution trace: a step-by-step description
of the problematic behaviour. For tools based on DiVM, this trace is simply a
list of non-deterministic choices made during the execution of the program (in-
ternally, there is only one non-deterministic choice operator and all state-space
branching is caused by this operator, including thread interleaving). Since the
program is isolated from the environment, this list completely and unambigu-
ously describes its entire execution history. When the DIVINE 4 model checker
discovers a problem in the program, it prints such a list of choices, which can
then be loaded into the simulator.

When the simulator loads a trace, it pre-populates the #n-type variables (see
Section 6.2) with states along the problematic execution, and “locks” the non-
deterministic choices to follow the trace. In this mode, stepping through the
program (backwards or forwards) will simply follow the counterexample, unless
a particular choice is overridden by the user. In effect, the user will be guided
through the faulty behaviour of the program, and can easily move back and forth
to locate the cause of the problem (as opposed to the symptom, which is what
the model checker reports and may be distinct from the original cause).

7 Conclusion

We have described a novel approach to interactive analysis of real, multi-threaded
C and C++ programs. The approach plays an important support role in the
wider context of automated verification and, in particular, model checking of
software. The simulator naturally supports the compact and universal counterex-
ample format used in DiVM. Compared to earlier tools, DIVINE 4 is substantially
more useful in practice, also thanks to the new interactive simulator.5

Bibliography

[1] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to
cause: localizing errors in counterexample traces. In POPL, pages 97–105.
ACM, 2003. URL http://doi.acm.org/10.1145/640128.604140.

[2] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM
and static driver verifier: Technology transfer of formal methods inside mi-
crosoft. In IFM, LNCS. Springer, 2004. URL http://dx.doi.org/10.

1007/978-3-540-24756-2_1.
[3] Jiri Barnat, Jan Beran, Lubos Brim, Tomas Kratochv́ıla, and Petr Ročkai.

Tool chain to support automated formal verification of avionics simulink
designs. In FMICS, number 7437 in LNCS, pages 78–92. Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-32469-7_6.

[4] Samik Basu, Diptikalyan Saha, and Scott A. Smolka. Getting to the root of
the problem: Focus statements for the analysis of counter-examples. 2012.

[5] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on up-
paal. In SFM, 2004.

[6] Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding counterex-
amples with explain. In CAV, LNCS, pages 453–456. Springer, 2004.

[7] Jeff Magee. Behavioral analysis of software architectures using LTSA. In
ICSE, 1999.

[8] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In PLDI, 2007.

[9] The LLVM Project. LLVM language reference manual, 2016. URL http:

//llvm.org/docs/LangRef.html.
[10] Petr Ročkai, Vladimı́r Štill, Ivana Černá, and Jǐŕı Barnat. DiVM: Model

checking with LLVM and graph memory. 2017. URL https://arxiv.org/

abs/1703.05341. Preliminary version.
[11] Richard Stallman, Roland Pesch, and Stan Shebs. Debugging with gdb.

2010.
[12] Ana-Maria Visan, Kapil Arya, Gene Cooperman, and Tyler Denniston.

Urdb: a universal reversible debugger based on decomposing debugging his-
tories. In PLOS ’11, 2011.

[13] Willem Visser and Alex Groce. What went wrong: Explaining counterex-
amples. In SPIN, LNCS, pages 121–135. Springer, 2002.

5 Supported by anecdotal evidence from working with students, both individually and
in a validation & verification course.

