
DiOS: A Lightweight Approach to Verifying
POSIX-Based Programs?

Zuzana Baranová, Jǐŕı Barnat, Kataŕına Kejstová,
Jan Mrázek, and Petr Ročkai

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{xbaranov,barnat,xkejstov,xmrazek7,xrockai}@fi.muni.cz

Abstract. In this paper, we describe a novel approach to verification
of programs which rely on POSIX APIs for their functioning. We lever-
age DiVM, an existing verification framework, which provides low-level
(machine-like) interfaces. In our approach, we do not extend the veri-
fier with special support for high-level features: instead, we have imple-
mented a small operating system with support for POSIX-compatible
threads, processes and filesystem. This operating system then becomes
part of the run-time environment of the user program (and from the
point of view of the verifier, is part of the system under test).
Additionally, we show that a small set of modular components can be
combined to obtain various levels of POSIX API support. This means
that DiOS can be configured to only provide features relevant to a partic-
ular program, yielding minimal overhead, without losing flexibility and
while providing comprehensive API coverage.

1 Introduction

Automated verification of real-world software is a complex task involving a large
number of components. The programming language in which the program of
interest is written is one source of complexity: real-world languages rarely fit
into neat formal semantic models. It is, in fact, more typical that they form a
maze of corner cases and ad-hoc fixes. It has been a notable trend in the software
verification community to move away from trying to capture this complexity in
semantic models of the input language, and instead rely on existing compilers to
produce a much simpler and semantically cleaner intermediate form. This allows
the verification tool to focus on the complexity inherent in software analysis,
instead of dealing with programming language idiosyncrasies.

While the input programming language is an immediate and unavoidable
concern for a verification tool, it is far from the only problem. Programs do
not exist in a vacuum – they execute within complex environments made of
the hardware platform, the host operating system, a number of other software

? This work has been partially supported by the Czech Science Foundation grant
No. 18-02177S and by Red Hat, Inc.



components and even network resources, the human user and other factors. The
issues that exist in formal treatment of programming languages are only more
acute in the case of the execution environment. First of all, the hardware platform
poses some unique challenges, especially concurrency and speculative execution
of modern CPUs. Those two features have significant impact on execution of a
large class of software. The upside is, that for the vast majority of programs, the
remaining complexity of the hardware platform is completely abstracted away
by the operating system.

On the other side of the environment, the behaviours of external factors like
network resources and human users is barely amenable to detailed formal treat-
ment. In engineering circles, those factors are typically modelled as maximally
adversarial: the system has to behave correctly regardless of how malformed or
even malicious its inputs are. This leaves us with the operating system and the
accompanying software as crucial factors of the execution environment.

The paper is organised as follows: Section 2 details the underlying architec-
ture of the verification system the OS was originally devised for. This covers the
DIVINE model checker and the corresponding virtual machine, DiVM. Section 3
follows, giving a description of the implemented operating system itself, focusing
on its most essential/distinctive features, including the file system, library sup-
port and internal kernel structure. Implementation details, as well as portability
of the resulting OS, is covered in Section 4 and Section 5 gives an evaluation of
the approach. Finally, Section 6 concludes the paper and outlines future work.

1.1 Goals

In this paper, we set out to design and implement a small and sufficiently self-
contained “model” operating system that can provide a realistic environment
for verification of POSIX-based programs. We would like the resulting system
to have the following properties:

1. Modularity: minimise the interdependence of the individual OS components.
It should be as easy as possible to use individual components (for instance
libc) without the others. The kernel should likewise be modular.

2. Portability: restrict the coupling to the underlying verification engine, mak-
ing the OS useful as a pre-made component in creating comprehensive veri-
fication tools.

3. Veracity: the system should precisely follow POSIX or other relevant stan-
dardised semantics. It should be possible to port realistic programs to run
on the operating system with minimal effort.

Since the stated properties are hard to quantify, we provide a qualitative
evaluation in Section 5. To demonstrate the usefulness of the approach, we show
that a standard UNIX utility, gzip, can be easily ported to DiOS and loaded
into an explicit-state model checker.

2



1.2 Contribution

The paper describes our effort to implement a compact operating system on
top of an existing verification framework / virtual machine. Our choice of plat-
form is DiVM [9], and its accompanying model checker DIVINE [1]. We have
succeeded in implementing the operating system as designed. Even though the
design is minimalistic, it is also complete, with fully-functional process manager
and filesystem modules, written entirely in C++. The resulting system is not a
standalone OS that could be booted on standard hardware, though: instead, it
is part of a verification framework and serves as a stand-in for a real operating
system during program verification. Besides the implementation itself, there are
two main contributions stemming from this effort:

1. We have identified minimal interfaces required for implementing standard
programming constructs like threads or exceptions. This allows verification
tool implementers to provide those minimal interfaces, instead of directly
supporting the complex high-level features.

2. DiOS is designed to be portable. Even though it was created on a particular
verification platform, large and useful parts are implemented in plain C or
in a subset of C++ that does not need extensive runtime support.

The implementation is available online1, under a permissive open-source li-
cence, and is also bundled with the model checker DIVINE.

1.3 Rationale

With the hereby presented approach, we aim to improve usability and practical-
ity of verification of real-world software. Particularly, the verification tool cannot
rely on the surrounding environment to remain uniform, rather, it is up to the
verifier to maximize its own portability. With the concept of an OS operating
within the verification tool, the ambition of smoothing out the differences of the
host OS is taken one step further. The minimal implementation of an operating
system controls/directs the program execution and, at the same time, discards
any unnecessary platform-dependend features.

The fact that the OS is shipped with the tool allows for flexibility of use
and easy substitution in terms of system components. Additionally, modularity
of components reduces the bulkiness and complexity of the verification engine
proper. This tends to reduce the number of mistakes and leaves space for the
verifier to be partially tailored for the analysed program.

In line with those considerations, we have chosen POSIX, a widespread,
largely standardized and well-defined interface, as the basis of our proposed
operating system. In a certain sense, it is an obvious choice for a system aimed
at real-world program verification.

1 https://divine.fi.muni.cz/2018/dios/

3



1.4 Related Work

Automated software verification is a field with bad reputation: the promise of
powerful, computerised analysis of software correctness is just barely out of
grasp, and has been for nearly two decades. Labour-intensive methods, like
computer-assisted theorem proving, are known to give good results, but with
a very steep price tag. One of the most successful projects in this area is seL4,
a microkernel with an end-to-end correctness proof [7].

While automated tools do exist, they are fraught with difficulties. Either the
tools use very rough approximations, or else, they cannot be used on realistic
software as a whole. The main focus of verification (as opposed to bug hunting)
tools are synthetic benchmarks and small, isolated code fragments extracted
from existing software, as epitomised by SV-COMP [3], the software verification
competition.

Unfortunately, work on verification of entire programs that make extensive
use of operating system services is scarce. One tool which allows a degree of
such interaction is KLEE [4], which provides a small subset of the standard C
library in a fashion similar to our present work: compiled and loaded alongside
the program under test. The scope of this support is, however, much narrower
than what is provided by DiOS. Additionally, KLEE can allow the program to
talk to the host operating system, in a feature similar to what we describe in
Section 3.6.

This latter approach, where system calls and even library calls are forwarded
to the host operating system is also used in some runtime model checkers, most
notably Inspect [11] and CHESS [8]. Those approaches, though, only work when
the program interacts with the operating system in a way free from side effects,
and when external changes in the environment do not disturb verification.

On the other hand, standard (offline) model checkers, in turn, rarely support
more than a handful of interfaces. The most widely supported is the POSIX
threading API, which is supported by tools such as Lazy-CSeq [5] and its vari-
ants, by Impara [10] and a few other tools.

2 Preliminaries

For the purpose of this paper, we will regard verification tools as virtual ma-
chines. This is more convenient in operating system design than to think of
verification tools as implementing programming language semantics. After all,
a normal operating system targets a particular hardware platform (machine),
rather than abstract computational semantics. The important issue is that the
verification tool is capable of executing programs. Clearly, the machine has to
be aware of the semantics of the program so it can, besides just executing it,
also decide on its correctness.

As stated, our primary target platform is DIVINE, a virtual machine and an
explicit-state model checker, and we expect the verified programs to be written
in C and C++ programming languages. When we talk about a program, we

4



mean a source file, either in C or C++, or the LLVM bitcode form produced by
a compiler from this source.

2.1 Virtual Machine

We have certain expectations from the virtual machine in question. Formally, the
operating system uses a set of hypercalls to communicate with the underlying
machine. However, most of these hypercalls can be either sufficiently emulated
using other constructs available in C or else their use is limited to a specific
subset of DiOS functionality. In those cases, the functionality can be disabled to
allow execution in an environment without equivalent facilities. A more detailed
account of these considerations will be presented in Section 4.

Since DIVINE is our primary platform, we will describe it in a little more
detail. It has multiple components, the one which is most pertinent to our topic
is DiVM, the virtual machine that DIVINE uses to execute programs. DiVM is
responsible for generating the state space of the program, for memory manip-
ulation and for ensuring the validity of the verification outcome. Internally, it
works with LLVM instructions – that is, within the virtual machine and dur-
ing the verification process, the to-be analysed programs are represented in the
LLVM IR form.

3 Architecture of DiOS

This chapter aims to outline the structure of the proposed system, the respective
components that form it and the means of communication of the components
within the larger verification system, with special focus on DiOS.

process manager

file system

fault handler

thread scheduler

syscall handler

POSIX IO pthreads

C99 IO

syscall interface

string.hPOSIX extras

malloc

libunwind

libc++abi

libc++

Math (libm)

DiOS kernel DiOS libc C++ support

Fig. 1. The architecture of DiOS.

The system is formally split into a kernel and a userspace component, al-
though the enforcement of this separation is optional, depending on the capa-
bilities of the platform. The kernel can be linked into the program under test as
a library, along with libc and other userspace components.

5



3.1 The Kernel

Since our goal is to mimic standard POSIX-compliant operating systems, we
have followed the traditional architecture associated with those systems. There
is a privileged kernel, which enforces process separation and abstracts hard-
ware. Both those roles are diminished in the case of DiOS, because we target
verification tools. Those tools are expected to enforce memory safety (partially
obviating need for isolation features in the kernel) and to provide a fairly small
interface (reducing the need for abstraction).

With one important exception, there is no platform interface to speak of:
there is no hardware to be managed, all traditional facilities being replaced with
virtual, memory-backed simulations. For instance, since there is no hardware
block storage facility, the only file system implementation available in DiOS is a
memory filesystem, similar to OpenBSD mfs or Linux tmpfs.

The one exception to this rule is the existence of a system call passthrough
mode, where the DiOS kernel forwards system calls from the program under
test, through the virtual machine all the way to the real host operating system.
This mode of operation is described in more detail in Section 3.6.

3.2 System Calls

In previous iterations of DiOS, the system call mechanism was closely modelled
on the traditional approach used in real processors. This was because the native
platform that DiOS was initially written for offered an interrupt facility. It has
been, however, realised, that this is rather uncommon in verification tools and
that the approach hampers portability.

For this reason, the current system call interface of DiOS is built around
concepts similar to the more modern approach used in fast system call imple-
mentations, embodied by the syscall and sysret instructions in current x86-64
processors. The major advantage of this approach is that, unlike interrupts, the
syscall-style traps can be easily emulated with plain function calls in C. More
details about the emulation and the compromises it entails are provided in Sec-
tion 4.

DiOS provides the standard subset of system calls that would be expected
in a POSIX-compatible operating system. Those roughly fall into the following
categories:

1. Thread and process management. This includes system calls to establish
new threads, sufficient to implement the pthreads interface (the system calls
themselves are not standardised by POSIX), the fork system call, kill, mis-
cellaneous process and process group management (getpid, getsid, setsid,
wait and so on). Notably, exec is currently not implemented and it is not
clear if this can be done in a portable fashion. The thread- and process-
related functionality is described in more detail in Section 3.4.

2. File system calls. The standard suite of POSIX calls for opening and closing
files, reading and writing data, creating soft and hard links. This includes

6



the *at family introduced in POSIX.1 which allows for thread-safe use of
relative paths.

3. Network-related system calls. The standard BSD socket API is implemented,
allowing threads or processes of the program under test to use sockets for
communication.

3.3 Kernel Components

The decomposition of the kernel to a number of components serves two goals:
first is resource conservation – some components have non-negligible memory
overhead even when they are not actually used. This may be because they need
to store auxiliary data along with each thread or process, and the underlying ver-
ification tool will need to track this data throughout the execution or throughout
the entire state space, adding to a sizeable contribution.

The second reason for splitting up the kernel is portability: some components
have very simple requirements, but others need fairly sophisticated support from
the underlying platform. This is mainly the case with thread support and C++
exception support, which both need an ability to manipulate the stack of the
program, or, in the case of threads, even create new stacks and stack frames on
demand. Naturally, it is not practical for all verification systems to provide such
facilities. Allowing DiOS to be configured without thread support allows us to
also target those verification platforms.

The components of the kernel are organised as a stack, where upper compo-
nents can use services of the components below them. While this appears to be
a severe limitation, in practice this has not posed substantial challenges, and the
stack-organised design is much simpler than the alternatives.

The following components are available, some coming in several alternative
implementations:

– A scheduler. There are 3 scheduler implementations, two of them asyn-
chronous – that is, they implement thread-based parallelism. One is a stan-
dard scheduler which simply interleaves all runnable threads, useful for ver-
ification of safety properties in parallel programs. The other asynchronous
scheduler includes a fairness provision, making it more suitable for verifica-
tion of liveness properties. Finally, there is a synchronous scheduler, suitable
for verification of C code synthesised from data-flow programs and hardware
designs.

– File system. This component provides both a memory-backed filesystem as
well as pipes and sockets. Most system calls are implemented in this compo-
nent (i.e. both the second and third groups listed in Section 3.2).

– Fault handler. This component takes care of responding to error conditions
indicated by the underlying verification platform. It is optional, since not
all verifiers can report problems to the system under test. If present, the
component allows the user to configure certain problems to be ignored during
verification. The C library (cf. Section 3.7) also uses this component to report
assertion failures and the like.

7



– Process manager. This component implements the fork system call, along
with most other process-related services. It requires that one of the asyn-
chronous schedulers is present below in the stack.

– The base component. This component provides fallback implementations
of all system calls, that simply raise a runtime error. This means that the
system call table is not affected by configuration changes, which is important
because configurations can be selected at runtime. This component always
forms the bottom of the configuration stack.

The first goal we set in Section 1.1, modularity, aims to separate the com-
ponents and have them interact with one another using minimalist interfaces.
One advantage that derives from the modular view is the option to swap a
component for another with little extra effort – this is mainly illustrated in the
filesystem and scheduler components in the above list, which each has multi-
ple implementations. Certain components may be even left out entirely. Finally,
minimal interfaces also make it easier to design and reason about the compo-
nents and minimises the mistakes made if every component is responsible for a
small well-defined part of the system.

On one hand, the respective components ought to have minimal dependencies
between them. A different way as to how to regard modularity is based on the
idea that not all programs use or need every feature of the operating system.
A single-threaded program need not have process-specific functions, such as the
fork system call or functions for manipulating attributes of (nonexistent) child
processes at its disposal. Similarly, if a program does not require file system
support, it suffices to supply it with a considerably reduced version of a file
system.

3.4 Threads and Processes

One of the innovative features of DiOS is that it contains an implementation
of the POSIX threading API, without requiring the verification tool to contain
special thread support. This pthread implementation is in fact part of the libc

shipped with DiOS and only relies on a few system calls provided by the DiOS
kernel, and on the thread scheduler kernel component.

The scheduler is implemented in terms of a nondeterministic choice operator,
which is usually available in software verification platforms. More details are
provided in Section 4.1. The final ingredient is the ability to create and switch
execution stacks. In this case, there is no choice but to implement this support
in a platform-dependent way, since stack representation is platform-specific. On
our primary platform, execution stacks have a particularly simple representation
and DiOS only needs a hypercall for transferring control to a different stack –
everything else is implemented in DiOS itself.

3.5 Synchronous Systems

As mentioned in Section 3.3, the flexible, component-based design allows com-
ponents to be swapped in and out of the kernel. We have taken advantage of this

8



flexibility when confronted with the task of designing a system for verification
of C code synthesised from synchronous system specifications. In this case, we
have replaced the standard asynchronous scheduler suitable for verification of
software with a synchronous design.

The principle of a synchronous system is that time passes in a consistent
fashion and all of the units forming the system are subject to a global clock,
which serves as a synchronisation mechanism. This means that, in synchronous
systems, time works in so-called ticks. In a single step (that is, one tick), each
component computes its outputs, taking into account its inputs and optionally
some internal state.

We introduced tasks as an atomic synchronisation unit (with asynchronous
tasks being simply the same as threads), and demonstrate the use of the
synchronous scheduler on Simulink-synthesised programs. Simulink is a mod-
elling environment for data-flow simulations. Our previous approach coupled to
Simulink designs at a higher level [2], but the current approach is more faithful,
since it uses the same C generator as the actual production synthesis 2. With
the synchronous scheduler in DiOS, it is possible to verify Simulink-synthesised
programs without further changes in the verification core.

3.6 System Call Passthrough

As mentioned, traditional verifiers work with a simulated memory environment
and do not interact with the surrounding operating system. This is because all
behaviour of the program has to be recorded for the purpose of verification and
the execution has to be reproducible, i.e. behave the same way (that is, every run
has to be reproducible). Communication with the environment in terms of I/O
and file manipulation violates both of these constraints; however, the verification
system can be adapted to the new circumstances. For instance, we have extended
the DIVINE verification framework with the option to forward system calls to
the host operating system and manipulate real files and memory [6].

This capability is not unique to DIVINE, in fact: in principle, it is quite
easy to extend other tools with a similar interface. For instance, the symbolic
execution tool KLEE [4] allows system calls to be passed through to the host
system, although it uses a different interface to this. Adapting KLEE to support
the interface expected by DiOS is quite straightforward.

3.7 The C Library

DiOS comes with a complete ISO C99 standard library. This includes the setjmp
and longjmp functions, which are often problematic in the context of verification.
The implementation of those two functions is closely related to C++ exception
support, and is described in more detail in Section 3.8.

The remainder of the C library can be broken down into a few categories:

2 There are multiple tools which generate C code from Simulink designs, one such tool
is Simulink Coder.

9



– Input and output. The functionality required by ISO C is implemented in
terms of the POSIX file system API. Number conversion (for formatted input
and output) is platform independent and comes from pdclib.

– The string manipulation and character classification routines are completely
system-independent. The implementations were also taken from pdclib.

– Memory allocation: new memory needs to be obtained in a platform-
dependent way. Optionally, memory allocation failures can be simulated us-
ing a non-deterministic choice operator. The library provides the standard
assortment of functions: malloc, calloc, realloc and free.

– Support for errno: this variable holds the most recent error code due to an
API call. On platforms with threads (like DiOS), it must be thread-local.

– Multibyte strings: conversions of unicode character sequences to and from
UTF-8 is supported.

– Time-related functions: time and date formatting (asctime) is supported.
Obtaining and manipulating wall time, and using and setting timers, is not,
although the relevant functions are present as simple stubs.

In addition to ISO C99, there are a few extensions (not directly related to
the POSIX OS interface) mandated by POSIX for the C library:

– Regular expressions. The DiOS libc supports the standard regcomp &
regexec APIs, with implementation based on the TRE library.

– Locale support: A very minimal support for POSIX internationalisation and
localisation APIs is present. The support is sufficient to run programs which
initialise the subsystem.

– Parsing command line options: the getopt and getopt long functions ex-
ist to make it easy for programs to parse standard UNIX-style command
switches. DiOS contains an implementation derived from the OpenBSD code
base.

Finally, C99 mandates a long list of functions for floating point math, includ-
ing trigonometry, hyperbolic functions and so on. A complete set of those func-
tions is provided by DiOS via its libm implementation, based on the OpenBSD
version of this library.

3.8 C++ Exceptions and longjmp

DiOS also includes low-level support for non-local jumps and stack unwind-
ing. This functionality is implemented by manipulating the execution stack in
a platform-dependent way. The stack unwinder provided by DiOS is then suf-
ficient to implement C++ exceptions using off-the-shelf components [12]. By
default, DiOS ships with an essentially unmodified libc++abi runtime support
library. Together, these components, along with metadata instrumented into the
program, enable transparent and faithful support for C++ exceptions.

Additionally, the same low-level stack unwinder is used in the implementation
of the C99 functions setjmp and longjmp, which can be used by user programs
to directly jump from one function to one of its (even indirect) callers. The
low-level unwinder is described in more detail in Section 4.2.

10



4 Implementation & Portability

As suggested in previous sections, DiOS requires (or in some cases, can take
advantage of) certain features in the underlying verification platform. We first
list those requirements and their meaning. The rest of this section will then
explain how the most important features of DiOS are implemented and how they
use those platform features. This information is also summarised in Table 1.

Table 1: Summary of available features and what they require from
the underlying verification platform: ‘stack’ means direct manipu-
lation with the execution stack, ‘nondet’ means nondeterministic
choice, ‘memsafe’ means that the feature relies on enforcement of
memory safety. Optional items are marked with ∗.

feature stack nondet memsafe other

malloc X∗ memory management
threads X X

sync systems X
processes X X X heap cloning

signals X
system calls supervisor mode∗

file system
longjmp X

exceptions X
passthrough mode syscall execution

replay mode X

The relevant platform features are as follows:

– Nondeterministic choice. The only type of choice required by DiOS is picking
a value from a small set of integers. The scheduler uses nondeterministic
choice to pick the thread to execute, malloc uses it to decide whether it
should fail, and so on.

– Memory management. The implementation of malloc needs to obtain mem-
ory from the system, and this operation must be directly supported by the
underlying virtual machine.

– Stack manipulation. This is, arguably, the trickiest of the features that DiOS
requires. It entails iteration over individual stack frames (activation records),
access to return address and the ability to edit the stack. In particular, the
current implementation expects that the execution stack is a linked list of
frames.

– Memory safety. The process support in DiOS relies on the assumption that
the verification platform enforces memory safety: it must be impossible to
construct “accidentally valid” pointers to existing memory.

11



– Heap cloning. Like memory safety, this feature is only required for process
support – the fork system call needs to be able to clone all memory reachable
through a given pointer.

– Supervisor mode. While this feature improves the credibility of the verifica-
tion outcome, it is not strictly required by DiOS.

– Host syscall execution. This feature was already described in Section 3.6. It
can be used along with a single-execution mode of the verifier to observe
program behaviour in its native environment.

4.1 Threads and Processes

As outlined in Section 3.4, the threading support in DiOS has two main com-
ponents. The first is a low-level implementation of a handful of primitives, in
particular a simple thread scheduler based on nondeterministic choice, and sup-
port for creating new threads and their forcible destruction.

The second component is the POSIX threading API, which builds on top of
this low-level thread support. The POSIX thread API is quite comprehensive and
contains over 100 functions. The current DiOS implementation provides approxi-
mately half of them, including all that are commonly used. Among other things,
the implementation is sufficiently complete to support the C++11 threading
library. The implementation of the high-level POSIX API is, in terms of the
low-level DiOS-specific API, quite straightforward. Therefore, in the remainder
of this section, we focus on the low-level interface.

The most interesting part of the threading support is the scheduler. Clearly,
the operating system alone cannot contain the entire machinery to allow veri-
fication of threaded programs. One external components is required: the input
program needs to be instrumented with interrupt points. This is a simple pro-
cedure when performed using a low-level program representation: for LLVM IR,
the instrumentation takes fewer than 200 lines of C++ code. The instrumenta-
tion simply needs to insert calls to a C function called dios interrupt, which
first takes care of internal bookkeeping and then notifies the verification tool to
generate and store a new program state.3 Finally, it invokes the scheduler, which
non-deterministically chooses the next thread to execute.

While a naive implementation of this approach would not be very efficient, it
is still suitable for verification of small programs. With additional support from
the verification platform, it is straightforward to include state space reductions
based on partial orders and/or invisible actions. In this case, the instrumentation
can make the calls to dios interrupt conditional: the scheduler will then be
only called if a visible action has been performed by the currently executing
thread.4

3 This notificaton mechanism is optional, and exists mainly for the convenience of the
verification tool.

4 This is exactly how state space reductions are implemented in DIVINE: the virtual
machine keeps track of memory accesses and provides a hypercall to test for their
visibility. The instrumentation ensures that dios interrupt is only called when
needed.

12



4.2 Stack Unwinding

The DiVM implementation of the low-level stack unwinder in DiOS relies on the
linked-list stack representation used on this platform. Additionally, the layout
of each stack frame is such, that the return address and return values can be
directly manipulated by reading and writing into the stack frame.

The unwinder is implemented as a C function, dios unwind, which has its
own stack frame, and operates by unlinking frames from the middle of the stack.
The memory used for local variables associated with the unlinked frames is freed.
Control then returns to the caller of dios unwind which may further manipu-
late the values in the target frame, e.g. to influence control flow (this is important
in both longjmp and in C++ exceptions). For this further manipulation, DiOS
provides a pair of functions, dios set register and dios get register,
which are lower-level counterparts to the standardised libunwind5 API for ma-
nipulating control flow.

4.3 Binary Compatibility

When dealing with verification of real-world software, the exact layout of data
structures becomes relevant, mainly because we would like to generate native
code from the verified bitcode file. To this end, the layouts of relevant data
structures and values of relevant constants are automatically extracted from the
host operating system and used in the DiOS libc. As a result, the native code
generated from the verified bitcode can be linked to native (host) libraries and
executed as usual.

5 Evaluation

The goals set out in Section 1.1 have been, to a large degree, met. In particu-
lar, the modularity of the system is well established, as it is used in practical
verification tasks in many different configurations, whether it is as a substrate
for verification of parallel algorithms that use the POSIX threading API, or in
verification of LTL properties of synchronous, Simulink-derived systems.

To evaluate both the veracity and general usability of DiOS, we have done a
case study based on the gzip compression utility. While this is a simple utility
(compared to typical programs), it serves very well to illustrate problems inher-
ent in automated software verification. Even though the implementation of the
compression algorithm used in gzip is entirely platform-independent, there is a
range of platform-dependent issues that gzip needs to deal with. This includes
input and output, but also resource limits, command line parsing (getopt) and

5 The libunwind library is part of the application binary interface on many POSIX
operating systems, and its interface is used, for instance, by C++ runtime libraries.
DiOS provides a fairly complete libunwind implementation based on the three func-
tions described here. More details about the relationships and inner workings of
these components are given in [12].

13



so on. Since POSIX platforms (and pre-POSIX UNIX) have a number of subtle
differences, gzip also bundles a portability library known as gnulib which com-
prises almost 18 thousand lines of code and often relies on minute details of the
operating system (for comparison, gzip itself is less than 7000 lines).

The good news is that gzip, along with gnulib, can be compiled for DiOS
with only 4 minor changes (each 1-2 lines) in the gnulib implementation, and
no changes in gzip itself.6 The resulting LLVM bitcode file can be loaded and
verified using DIVINE. Additionally, since DiOS libc is binary compatible with
the host version of the library (cf. Section 4.3), the verified bitcode can be
further translated into native code and executed in the host operating system
as a standard program.

Table 2: Selected benchmarks verified within DiOS.

category programs states search counterexample

posix 59 3124 2:29 6:24
pthread 170 4556 k 3:16:14 22:10
svcomp 113 4149 k 105:25:19 29:42
weakmem 82 5624 k 5:45:33 32:48
libcxx 309 1765 k 28:52 22:56
undef 35 119 0:27 2:27

Finally, in addition to these qualitative tests, we have successfully used DiOS
in verification of over 900 benchmarks and test cases. The total verification
time was over 112 hours and generated over 12 million states. The benchmark
set included C and C++ programs of various complexity and reliance on OS
facilities. Some of the categories are listed, along with program count, state
count and total verification time, in Table 2.

6 Conclusion & Future Work

We have presented DiOS, a POSIX-compatible operating system designed for
verification of programs. The larger goal of verifying unmodified, real-world pro-
grams requires the cooperation of many components, and a model of the oper-
ating system is an important piece of the puzzle. As the preliminary case study
shows, the proposed approach is a viable way forward.

There are two important future directions: further extending the coverage
and compatibility of DiOS with real operating systems, and porting DiOS to
other verification tools.

6 The complete patch for the gzip-1.8 source tarball is available online at https:

//divine.fi.muni.cz/2018/dios/

14



Bibliography

[1] Zuzana Baranová, Jǐŕı Barnat, Kataŕına Kejstová, Tadeáš Kučera, Henrich
Lauko, Jan Mrázek, Petr Ročkai, and Vladimı́r Štill. Model checking of C
and C++ with DIVINE 4. 2017.

[2] Jiri Barnat, Jan Beran, Lubos Brim, Tomas Kratochv́ıla, and Petr Ročkai.
Tool chain to support automated formal verification of avionics Simulink
designs. In FMICS, number 7437 in LNCS, pages 78–92. Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-32469-7_6.

[3] Dirk Beyer. Reliable and reproducible competition results with BenchExec
and witnesses report on SV-COMP 2016. In TACAS, pages 887–904.
Springer, 2016. ISBN 978-3-662-49673-2. doi: 10.1007/978-3-662-49674-9
55.

[4] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems pro-
grams. In USENIX Symposium on Operating Systems Design and Imple-
mentation, pages 209–224. USENIX Association, 2008.

[5] O. Inverso, T. L. Nguyen, B. Fischer, S. L. Torre, and G. Parlato.
Lazy-CSeq: A context-bounded model checking tool for multi-threaded
C-programs. In 2015 30th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 807–812, Nov 2015. doi:
10.1109/ASE.2015.108.

[6] Kataŕına Kejstová, Petr Ročkai, and Jǐŕı Barnat. From model checking to
runtime verification and back. In Runtime Verification, volume 10548 of
LNCS, pages 225–240. Springer, 2017. doi: 10.1007/978-3-319-67531-2 14.

[7] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, pages 207–220, Big Sky, MT,
USA, October 2009. ACM. doi: 10.1145/1629575.1629596.

[8] Madan Musuvathi, Shaz Qadeer, Tom Ball, Gerard Basler, Pira-
manayakam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In Symposium on Operating Systems
Design and Implementation. USENIX, December 2008.

[9] Petr Ročkai, Vladimı́r Štill, Ivana Černá, and Jǐŕı Barnat. DiVM: Model
checking with LLVM and graph memory. 2017. URL https://arxiv.org/

abs/1703.05341. Preliminary version.
[10] Björn Wachter, Daniel Kroening, and Joel Ouaknine. Verifying multi-

threaded software with impact. In Formal Methods in Computer-Aided
Design, pages 210–217. IEEE, 10 2013. doi: 10.1109/FMCAD.2013.6679412.

[11] Yu Yang, Xiaofang Chen, and Ganesh Gopalakrishnan. Inspect: A runtime
model checker for multithreaded c programs. Technical report, 2008.

[12] Vladimı́r Štill, Petr Ročkai, and Jǐŕı Barnat. Using off-the-shelf exception
support components in C++ verification. In IEEE International Conference
on Software Quality, Reliability and Security (QRS), pages 54–64, 2017.

15


