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Abstract. In this paper, we describe DiOS, a lightweight model oper-
ating system which can be used to execute programs that make use of
POSIX APIs. Such executions are fully reproducible: running the same
program with the same inputs twice will result in two exactly identical
instruction traces, even if the program uses threads for parallelism.
DiOS is implemented almost entirely in portable C and C++: although
its primary platform is DiVM, a verification-oriented virtual machine, it
can be configured to also run in KLEE, a symbolic executor. Finally, it
can be compiled into machine code to serve as a user-mode kernel.
Additionally, DiOS is modular and extensible. Its various components can
be combined to match both the capabilities of the underlying platform
and to provide services required by a particular program. New compo-
nents can be added to cover additional system calls or APIs.
The experimental evaluation has two parts. DiOS is first evaluated as
a component of a program verification platform based on DiVM. In the
second part, we consider its portability and modularity by combining it
with the symbolic executor KLEE.

1 Introduction

Real-world software has a strong tendency to interact with its execution en-
vironment in complex ways. To make matters worse, typical environments in
which programs execute are often extremely unpredictable and hard to control.
This is an important factor that contributes to high costs of software validation
and verification. Even the most resilient verification methods (those based on
testing) see substantial adverse effect.

In automated testing, one of the major criteria for a good test case is that
it gives reliable and reproducible results, without intermittent failures. This is
especially true in the process of debugging: isolating a fault is much harder when
it cannot be consistently observed. For this reason, significant part of the effort
involved in testing is spent on controlling the influence of the environment on
the execution of test cases.
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The situation is even worse with more rigorous verification methods – for
instance, soundness of verification tools based on dynamic analysis strongly de-
pends on the ability to fully control the execution of the system under test.

In this paper, we set out to design and implement a small and sufficiently self-
contained model operating system that can provide a realistic environment for
executing POSIX-based programs. Since this environment is fully virtualised and
isolated from the host system, program execution is always fully reproducible.
As outlined above, such reproducibility is valuable, sometimes even essential,
in testing and program analysis scenarios. Especially dynamic techniques, like
software model checking or symbolic execution, rely on the ability to replay
interactions of the program and obtain identical outcomes every time.

1.1 Contribution

The paper describes our effort to implement a compact operating system on
top of existing verification frameworks and virtual machines (see Section 3).
Despite its minimalist design, the current implementation covers a wide range
of POSIX APIs in satisfactory detail (see also Section 4.3). The complete source
code is available online,1 under a permissive open-source licence. Additionally,
we have identified a set of low-level interfaces (see Section 2) with two important
qualities:

1. the interfaces are lightweight and easy to implement in a VM,
2. they enable an efficient implementation of complex high-level constructs.

Minimal interfaces are a sound design principle and lead to improved mod-
ularity and re-usability of components. In our case, identification of the correct
interfaces drives both portability and compactness of implementation.

Finally, the design that we propose improves robustness of verification
tools. A common implementation strategy treats high-level constructs (e.g. the
pthread API) as primitives built into the execution engine. This ad-hoc ap-
proach often leads to implementation bugs which then compromise the soundness
of the entire tool. Our design, on the other hand, emphasises clean separation of
concerns and successfully reduces the amount of code which forms the trusted
execution and/or verification core.

1.2 Design Goals

We would like our system to have the following properties:

1. Modularity: minimise the interdependence of the individual OS components.
It should be as easy as possible to use individual components (for instance
libc) without the others. The kernel should likewise be modular.

1 https://divine.fi.muni.cz/2019/dios/

2



2. Portability: reduce the coupling to the underlying platform (verification en-
gine), making the OS useful as a pre-made component in building verification
and testing tools.

3. Veracity: the system should precisely follow POSIX and other applicable
standardised semantics. It should be possible to port realistic programs to
run on the operating system with minimal effort.

Since the desired properties are hard to quantify, we provide a qualitative
evaluation in Section 5. To demonstrate the viability of our approach, we show
that many UNIX programs, e.g. gzip or a number of programs from the GNU
coreutils suite can be compiled for DiOS with no changes and subsequently
analysed using an explicit-state model checker.

1.3 Related Work

Execution reproducibility is a widely studied problem. A number of tools capture
provenance, or history of the execution, by following and recording program’s
interactions with the environment, later using this information to reproduce the
recorded execution. For instance, ReproZip [4] bundles the environment vari-
ables, files and library dependencies it observes so that the executable can be
run on a different system. Other programs exist, that instead capture the prove-
nance in form of logs [7], or sometimes more complex structures – provenance
graphs in case of ES3 [5].

SCARPE [7] was developed for Java programs and captures I/O, user inputs
and interactions with the database and the filesystem into a simple event log.
The user has to state which interactions to observe by annotating the individual
classes that make up the program, since the instrumentation introduces substan-
tial overhead, and recording all interactions may generate a considerable amount
of data (for example, capturing a large portion of the database).

Another common approach to dealing with the complexity of interactions
with the execution environment is mocking [14, 15]: essentially, building small
models of the parts of the environment that are relevant in the given test scenario.
A mock object is one step above a stub, which simply accepts and discards all
requests. A major downside of using mock objects in testing is that sufficiently
modelling the environment requires a lot of effort: either the library only provides
simple objects and users have to model the system themselves, or the mock
system is sophisticated, but the user has to learn a complex API.

Most testing frameworks for mainstream programming languages offer a de-
gree of support for building mock objects, including mock objects which model
interaction with the operating system. For instance the pytest tool [11] for
Python allows the user to comfortably mock a database connection. A more
complex example of mocking would be the filesystem support in Pex [10], a sym-
bolic executor for programs targeting the .NET platform. KLEE is a symbolic
executor based on LLVM and targets C (and to some degree C++) programs
with a different approach to environment interaction. Instead of modelling the
file system or other operating system services, it allows the program to directly
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interact with the host operating system, optionally via a simple adaptation layer
which provides a degree of isolation based on symbolic file models.

This latter approach, where system calls and even library calls are forwarded
to the host operating system is also used in some runtime model checkers, most
notably Inspect [19] and CHESS [16]. However, those approaches only work when
the program interacts with the operating system in a way free from side effects,
and when external changes in the environment do not disturb verification.

One approach to lifting the non-interference requirement is cache-based
model checking [13], where initially, the interactions with the environment are
directly performed and recorded in a cache. If the model checker then needs to
revisit one of the previous states, the cache component takes over and prevents
inconsistencies from arising along different execution paths. This approach is
closely related to our proxy and replay modes (Section 4.1), though in the case
of cache-based model checking, both activities are combined into a single run of
the model checker. Since this approach is focused on piece-wise verification of
distributed systems, the environment mainly consists of additional components
of the same program. For this reason, the cache can be realistically augmented
with process checkpointing to also allow backtracking the environment to a cer-
tain extent.

Finally, standard (offline) model checkers rarely support more than a handful
of interfaces. The most widely supported is the POSIX threading API, which is
modelled by tools such as Lazy-CSeq [6] and its variants, by Impara [18] and by
a few other tools.

2 Platform Interface

In this section, we will describe our expectations of the execution or verification
platform and the low-level interface between this platform and our model oper-
ating system. We then break down the interface into a small number of areas,
each covering particular functionality.

2.1 Preliminaries

The underlying platform can have different characteristics. We are mainly inter-
ested in platforms or tools based on dynamic analysis, where the program is at
least partially interpreted or executed, often in isolation from the environment.
If the platform itself isolates the system under test, many standard facilities like
file system access become unavailable. In this case, the role of DiOS is to provide
a substitute for the inaccessible host system.

If, on the other hand, the platform allows the program to access the host
system, this easily leads to inconsistencies, where executions explored first can
interfere with the state of the system observed by executions explored later. For
instance, files or directories might be left around, causing unexpected changes in
the behaviour2 of the system under test. In cases like those, DiOS can serve to

2 If execution A creates a file and leaves it around, execution B might get derailed when
it tries to create the same file, or might detect its presence and behave differently.
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insulate such executions from each other. Under DiOS, the program can observe
the effects of its actions along a single execution path – for instance, if the
program creates a file, it will be able to open it later. However, this file never
becomes visible to another execution of the same program, regardless of the
exploration order.

Unfortunately, not all facilities that operating systems provide to programs
can be modelled entirely in terms of standard C. To the contrary, certain areas
of high-level functionality that the operating system is expected to implement
strongly depend on low-level aspects of the underlying platform. Some of those
are support for thread scheduling, process isolation, control flow constructs such
as setjmp and C++ exceptions, among others. We will discuss those in more
detail in the following sections.

2.2 Program Memory

An important consideration when designing an operating system is the semantics
of the memory subsystem of its execution platform. DiOS is no exception: it needs
to provide a high-level memory management API to the application (both the
C malloc interface and the C++ new/delete interface). In principle, a single
flat array of memory is sufficient to implement all the essential functionality.
However, it lacks both in efficiency and in robustness. Ideally, the platform would
provide a memory management API that manages individual memory objects
which in turn support an in-place resize operation. This makes operations more
efficient by avoiding the need to make copies when extra memory is required,
and the operating system logic simpler by avoiding a level of indirection.

If the underlying platform is memory-safe and if it provides a supervisor
mode to protect access to certain registers or to a special memory location,
the remainder of kernel isolation is implemented by DiOS itself, by withholding
addresses of kernel objects from the user program. In this context, memory safety
entails bound checks and an inability to overflow pointers from one memory
object into another.

2.3 Execution Stack

Information about active procedure calls and about the local data of each pro-
cedure are, on most platforms, stored in a special execution stack. While the
presence of such a stack is almost universal, the actual representation of this
stack is very platform-specific. On most platforms that we consider,3 it is part of
standard program memory and can be directly accessed using standard memory
operations. If both reading and modifications of the stack (or stacks) is possible,
most of the operations that DiOS needs to perform can be implemented without
special assistance from the platform itself. Those operations are:

3 The main exception is KLEE, where the execution stack is completely inaccessible
to the program under test and only the virtual machine can access the information
stored in it. See also Section 3.2.

5



– creation of a new execution stack, which is needed in two scenarios: isola-
tion of the kernel stack from the user-space stack and creation of new tasks
(threads, co-routines or other similar high-level constructs),

– stack unwinding, where stack frames are traversed and removed from the
stack during exception propagation or due to setjmp/longjmp.

Additionally, DiOS needs a single operation that must be always provided by
the underlying platform: it needs to be able to transfer control to a particular
stack frame, whether within a single execution stack (to implement non-local
control flow) or to a different stack entirely (to implement task switching).

In some sense, this part of the platform support is the most complex and the
hardest to implement. Fortunately, the features that rely on the above opera-
tions, or rather the modules which implement those features, are all optional in
DiOS.

2.4 Auxiliary Interfaces

There are three other points of contact between DiOS and the underlying plat-
form. They are all optional or can be emulated using standard C features, but
if available, DiOS can use them to offer additional facilities mainly aimed at
software verification and testing with fault injection.

Indeterminate values. A few components in DiOS use, or can be configured to
use, values which are not a priori determined. The values are usually subject to
constraints, but within those constraints, each possible value will correspond to
a particular interaction outcome. This facility is used for simulating interactions
that depend on random chance (e.g. thread scheduling, incidence of clock ticks
relative to the instruction stream), or where the user would prefer to not provide
specific input values and instead rely on the verification or testing platform to
explore the possibilities for them (e.g. the content of a particular file).

Nondeterministic choice. A special case of the above, where the selection is
among a small number of discrete options. In those cases, a specific interface can
give better user experience or better tool performance. If the choice operator is
not available but indeterminate values are, they can be used instead. Otherwise,
the sequence of choices can be provided as an input by the user, or they can be
selected randomly. The choice operation is used for scheduling choices and for
fault injection (e.g. simulation of malloc failures).

Host system call execution. Most POSIX operating systems provide an indirect
system call facility, usually as the C function syscall(). If the platform makes
this function accessible from within the system under test, DiOS can use it to
allow real interactions between the user program and the host operating system
to take place and to record and then replay such interactions in a reproducible
manner.
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3 Supported Platforms

In the previous section, we have described the target platform in generic, abstract
terms. In this section, we describe 3 specific platforms which can execute DiOS
and how they fit with the above abstract requirements.

3.1 DiVM

DiVM [17] is a verification-oriented virtual machine based on LLVM. A suite of
tools based on DiVM implement a number of software verification techniques,
including explicit-state, symbolic and abstraction-based model checking. DiVM
is the best supported of all the platforms, since it has been specifically designed
to delegate responsibility for features to a model operating system. All features
available in DiOS are fully supported on this platform.

In DiVM, the functionality that is not accessible through standard C (or
LLVM) constructs is provided via a set of hypercalls. These hypercalls form the
core of the platform interface in DiOS and whenever possible, ports to other
platforms are encouraged to emulate the DiVM hypercall interface using the
available platform-native facilities.

3.2 KLEE

KLEE [3] is a symbolic executor based on LLVM, suitable both for automated
test generation and for exhaustive exploration of bounded executions. Unlike
DiVM, KLEE by default allows the program under test to perform external calls
(including calls to the host operating system), with no isolation between different
execution branches. Additionally, such calls must be given concrete arguments,
since they are executed as native machine code (i.e. not symbolically). However,
if the program is linked to DiOS, both these limitations are lifted: DiOS code can
be executed symbolically like the rest of the program, and different execution
branches are isolated from each other.

However, there is also a number of limitations when KLEE is considered as a
platform for DiOS. The two most important are as follows:

1. KLEE does not currently support in-place resizing of memory objects. This is
a design limitation and lifting it requires considerable changes. A workaround
exists, but it is rather inefficient.

2. There is only one execution stack in KLEE, and there is no support for non-
local control flow. This prevents DiOS from offering threads, C++ exceptions
and setjmp when executing in KLEE.

Additionally, there is no supervisor mode and hence no isolation between the
kernel and the user program. However, in most cases, this is not a substantial
problem. Non-deterministic choice is available via indeterminate symbolic values,
and even though KLEE can in principle provide access to host syscalls, we have
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not evaluated this functionality in conjunction with DiOS. Finally, there are a
few minor issues that are, however, easily corrected:4

1. KLEE does not support the va arg LLVM instruction and relies on emulating
platform-specific mechanisms instead, which are absent from DiOS,

2. it handles certain C functions specially, including the malloc family, the
C++ new operator, the errno location and functions related to assertions
and program termination; this interferes with the equivalent functionality
provided by DiOS libc, and finally

3. global constructors present in the program are unconditionally executed be-
fore the entry function; since DiOS invokes constructors itself, this KLEE
behaviour also causes a conflict.

3.3 Native Execution

The third platform that we consider is native execution, i.e. the DiOS kernel
is compiled into machine code, like a standard user-space program, to execute
as a process of the host operating system. This setup is useful in testing or in
stateless model checking, where it can provide superior execution speed at the
expense of reduced runtime safety. The user program still uses DiOS libc and
the program runs in isolation from the host system. The platform-specific code
in DiOS uses a few hooks provided by a shim which calls through into the host
operating system for certain services, like the creation and switching of stacks.
The design is illustrated in Figure 1.

program under test

DiOS libc + kernel bitcode isolated executable

platform-specific code host shim host libc

Fig. 1. Architecture of the native execution platform.

Like in KLEE, the native port of DiOS does not have access to in-place re-
sizing of memory objects, but it can be emulated slightly more efficiently using
the mmap host system call. The native port, however, does not suffer from the
single-stack limitations that KLEE does: new stacks can be created using mmap

calls, while stack switching can be implemented using host setjmp and longjmp

functions.5 The host stack unwinding code is directly used (the DiVM platform
code implements the same libunwind API that most POSIX systems also use).

4 A version of KLEE with fixes for those problems is available online, along with other
supplementary material, from https://divine.fi.muni.cz/2019/dios/.

5 The details of how this is done are discussed in the online supplementary material
at https://divine.fi.muni.cz/2019/dios/.
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On the other hand, non-deterministic choice is not directly available. It can
be simulated by using the fork host system call to split execution, but this does
not scale to frequent choices, such as those arising from scheduling decisions.
In this case, a random or an externally supplied list of outcomes are the only
options.

4 Design and Architecture

This section outlines the structure of the DiOS kernel and userspace, their com-
ponents and the interfaces between them. We also discuss how the kernel in-
teracts with the underlying platform and the user-space libraries stacked above
it. A high-level overview of the system is shown in Figure 2. The kernel and
the user-mode parts of the system under test can be combined using different
methods; even though they can be linked into a single executable image, this is
not a requirement, and the kernel can operate in a separate address space.

Like with traditional operating systems, kernel memory is inaccessible to
the program and libraries executing in user-mode. In DiOS, this protection is
optional, since not all platforms provide supervisor mode or sufficient memory
safety; however, it does not depend on address space separation between the
kernel and the user mode.

fault handler

file system

scheduler

other components

C99 IO

POSIX IO, syscalls

pthread

platform-specific code

non-IO C99 lib

malloc libc++

libc++abi

execution platform

kernel libc C++ support

Fig. 2. The architecture of DiOS.

4.1 Kernel Components

The decomposition of the kernel to a number of components serves multiple
goals: first is resource conservation – some components have non-negligible mem-
ory overhead even when they are not actively used. This may be because they
need to store auxiliary data along with each thread or process, and the under-
lying verification tool then needs to track this data throughout the execution or
throughout the entire state space. The second is improved portability to plat-
forms which do not provide sufficient support for some of the components, for
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instance thread scheduling. Finally, it allows DiOS to be reconfigured to serve in
new contexts by adding a new module and combining it with existing code.

The components of the kernel are organised as a stack, where upper compo-
nents can use services of the components below them. While this might appear to
be a significant limitation, in practice this has not posed substantial challenges,
and the stack-organised design is both efficient and simple. A number of pre-
made components are available, some in multiple alternative implementations:

Task scheduling and process management. There are 4 scheduler implementa-
tions: the simplest is a null scheduler, which only allows a single task and does
not support any form of task switching. This scheduler is used on KLEE. Second
is a synchronous scheduler suitable for executing software models of hardware
devices. The remaining two schedulers both implement asynchronous, thread-
based parallelism. One is designed for verification of safety properties of parallel
programs, while the other includes a fairness provision and is therefore more
suitable for verification of liveness properties.

In addition to the scheduler, there is an optional process management com-
ponent. It is currently only available on the DiVM platform, since it heavily relies
on operations which are not available elsewhere. It implements the fork system
call and requires one of the two asynchronous schedulers.

POSIX System Calls. While a few process-related system calls are implemented
in the components already mentioned, the vast majority is not. By far the largest
coherent group of system calls deals with files, directories, pipes and sockets, with
file descriptors as the unifying concept. A memory-backed filesystem module
implements those system calls by default.

A smaller group of system calls relate to time and clocks and those are im-
plemented in a separate component which simulates a system clock. The specific
simulation mode is configurable and can use either indeterminate values to shift
the clock every time it is observed, or a simpler variant, where ticks of fixed
length are performed based on the outcome of a nondeterministic choice.

The system calls covered by the filesystem and clock modules can be alter-
nately provided by a proxy module, which forwards the calls to the host oper-
ating system, or by a replay module which replays traces captured by the proxy
module.

Auxiliary modules. There is a small number of additional modules which do not
directly expose functionality to the user program. Instead, they fill in support
roles within the system. The two notable examples are the fault handler and the
system call stub component.

The fault handler takes care of responding to error conditions indicated by the
underlying platform. It is optional, since not all platforms can report problems
to the system under test. If present, the component allows the user to configure
which problems should be reported as counterexamples and which should be
ignored. The rest of DiOS also uses this component to report problems detected
by the operating system itself, e.g. the libc uses it to flag assertion failures.
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The stub component supplies fallback implementations of all system calls
known to DiOS. This component is always at the bottom of the kernel config-
uration stack – if any other component in the active configuration implements
a particular system call, that implementation is used. Otherwise, the fallback is
called and raises a runtime error, indicating that the system call is not supported.

4.2 Thread Support

One of the innovative features of DiOS is that it implements the POSIX thread-
ing API using a very simple platform interface. Essentially, the asynchronous
schedulers in DiOS provide an illusion of thread-based parallelism to the pro-
gram under test, but only use primitives associated with coroutines – creation
and switching of execution stacks (cf. Section 2.3).

However, an additional external component is required: both user and li-
brary code needs to be instrumented with interrupt points, which allow thread
preemption to take place. Where to insert them can be either decided statically
(which is sufficient for small programs) or dynamically, allowing the state space
to be reduced using more sophisticated techniques.6 The implementation of the
interrupt point is, however, supplied by DiOS: only the insertion of the function
call is done externally.

The scheduler itself provides a very minimal internal interface – the remain-
der of thread support is implemented in user-space libraries (partly libc and
partly libpthread, as is common on standard POSIX operating systems). Even
though the implementation is not complete (some of the rarely-used functions
are stubbed out), all major areas are well supported: thread creation and can-
cellation, mutual exclusion, condition variables, barriers, reader-writer locks, in-
teraction with fork, and thread-local storage are all covered. Additionally, both
C11 and C++11 thread APIs are implemented in terms of the pthread interface.

4.3 System Calls

The system call interface of DiOS is based on the ideas used in fast system call
implementations on modern processors.7 A major advantage of this approach is
that system calls can be performed using standard procedure calls on platforms
which do not implement supervisor mode.

The list of system calls available in DiOS is fixed:8 in addition to the kernel-
side implementation, which may or may not be available depending on the active

6 In DIVINE [1], a model checker based on DiVM, interrupt points are dynamically
enabled when the executing thread performs a visible action. Thread identification
is supplied by the scheduler in DiOS using a platform-specific (hypercall) interface.

7 For instance, on contemporary x86-64 processors, this interface is available via the
syscall and sysret instructions.

8 The list of system calls is only fixed relative to the host operating system. To allow
the system call proxy component to function properly, the list needs to match what
is available on the host. For instance, creat, uname or fdatasync are system calls
on Linux but standard libc functions on OpenBSD.
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configuration, each system call has an associated user-space C function, which
is declared in one of the public header files and implemented in libc.

The available system calls cover thread management, sufficient to imple-
ment the pthread interface (the system calls themselves are not standardised
by POSIX), the fork system call, kill and other signal-related calls, various pro-
cess and process group management calls (getpid, getsid, setsid, wait, and
so on). Notably, exec is currently not implemented, and it is not clear whether
adding it is feasible on any of the platforms. The thread- and process- related
functionality was described in more detail in Section 4.2.

Another large group of system calls cover files and networking, including the
standard suite of POSIX calls for opening and closing files, reading and writ-
ing data, creating soft and hard links. This includes the *at family introduced
in POSIX.1 which allows thread-safe use of relative paths. The standard BSD
socket API is also implemented, allowing threads or processes of the program
under test to use sockets for communication. Finally, there are system calls for
reading (clock gettime, gettimeofday) and setting clocks (clock settime,
settimeofday).

4.4 The C Library

DiOS comes with a complete ISO C99 standard library and the C11 thread
API. The functionality of the C library can be broken down into the following
categories:

– Input and output. The functionality required by ISO C is implemented in
terms of the POSIX file system API. Number conversion (for formatted input
and output) is platform independent and comes from pdclib.

– The string manipulation and character classification routines are completely
system-independent. The implementations were also taken from pdclib.

– Memory allocation: new memory needs to be obtained in a platform-
dependent way. Optionally, memory allocation failures can be simulated us-
ing a non-deterministic choice operator. The library provides the standard
assortment of functions: malloc, calloc, realloc and free.

– Support for errno: this variable holds the code of the most recent error
encountered in an API call. On platforms with threads (like DiOS), errno
is thread-local.

– Multibyte strings: conversion of Unicode character sequences to and from
UTF-8 is supported.

– Time-related functions: time and date formatting (asctime) is supported,
as is obtaining and manipulating wall time. Interval timers are currently not
simulated, although the relevant functions are present as simple stubs.

– Non-local jumps. The setjmp and longjmp functions are supported on DiVM
and native execution, but not in KLEE.

In addition to ISO C99, there are a few extensions (not directly related to
the system call interface) mandated by POSIX for the C library:
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– Regular expressions. The DiOS libc supports the standard regcomp &
regexec APIs, with implementation based on the TRE library.

– Locale support: A very minimal support for POSIX internationalisation and
localisation APIs is present. The support is sufficient to run programs which
initialise the subsystem.

– Parsing command line options: the getopt and getopt long functions ex-
ist to make it easy for programs to parse standard UNIX-style command
switches. DiOS contains an implementation derived from the OpenBSD code
base.

Finally, C99 mandates a long list of functions for floating point math, includ-
ing trigonometry, hyperbolic functions and so on. A complete set of those func-
tions is provided by DiOS via its libm implementation, based on the OpenBSD
version of this library.

4.5 C++ Support Libraries

DiOS includes support for C++ programs, up to and including the C++17 stan-
dard. This support is based on the libc++abi and libc++ open-source libraries
maintained by the LLVM project. The versions bundled with DiOS contain only
very minor modifications relative to upstream, mainly intended to reduce pro-
gram size and memory use in verification scenarios.

Notably, the exception support code in libc++abi is unmodified and works
both in DiVM and when DiOS is executing natively as a process of the host
operating system. This is because libc++abi uses the libunwind library to
implement exceptions. When DiOS runs natively, the host version of libunwind
is used, the same as with setjmp. When executing in DiVM, DiOS supplies its
own implementation of the libunwind API, as described in [20].

4.6 Binary Compatibility

When dealing with verification of real-world software, the exact layout of data
structures becomes important, mainly because we would like to generate native
code from verified bitcode files (when using either KLEE or DiVM). To this
end, the layouts of relevant data structures and values of relevant constants are
automatically extracted from the host operating system9 and then used in the
DiOS libc. As a result, the native code generated from the verified bitcode
can be linked to host libraries and executed as usual. The effectiveness of this
approach is evaluated in Section 5.3.

9 This extraction is performed at DiOS build time, using hostabi.pl, which is part
of the DiOS source distribution. The technical details are discussed in the online
supplementary material.
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user program native code user

DiOS headers bitcode host libc

DiOS libraries DiVM bitcode verification

Fig. 3. Building verified executables with DiOS.

5 Evaluation

We have tested DiOS in a number of scenarios, to ensure that it meets the goals
that we describe in Section 1.2. The first goal – modularity – is hard to quantify
in isolation, but it was of considerable help in adapting DiOS for different use
cases. We have used DiOS with success in explicit-state model checking of parallel
programs [1], symbolic verification of both parallel and sequential programs [12],
for verification of liveness (LTL) properties of synchronous C code synthesized
from Simulink diagrams, and for runtime verification of safety properties of soft-
ware [9]. DiOS has also been used for recording, replaying and fuzzing system
call traces [8].

5.1 Verification with DiVM

In this paper, we report on 3 sets of tests that we performed particularly to eval-
uate DiOS. The first is a set of approximately 2200 test programs10 which cover
various aspects of the entire verification platform. Each of them was executed in
DiOS running on top of DiVM and checked for a number of safety criteria: lack
of memory errors, use of uninitialized variables, assertion violations, deadlocks
and arithmetic errors. In the case of parallel programs (about 400 in total), all
possible schedules were explored. Additionally, approximately 700 of the test
programs depend on one or more input values (possibly subject to constraints),
in which case symbolic methods or abstraction are used to cover all feasible paths
through the program. The tests were performed on two host operating systems:
Linux 4.19 with glibc 2.29 and on OpenBSD 6.5, with no observed differences
in behaviour.

The majority (1300) of the programs are written in C, the remainder in C++,
while a third of them (700) were taken from the SV-COMP [2] benchmark suite.
Roughly half of the programs contain a safety violation, the location of which is
annotated in the source code. The results of the automated analysis are in each
case compared against the annotations. No mismatches were found in the set.

10 All test programs are available online at http://divine.fi.muni.cz/2019/dios/,
including scripts to reproduce the results reported in this and in the following sec-
tions.
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5.2 Portability

To evaluate the remaining ports of DiOS, we have taken a small subset (370
programs, or 17%) of the entire test suite and executed the programs on the
other two platforms currently supported by DiOS. The subset was selected to
fall within the constraints imposed by the limitations of our KLEE port – in
particular, lack of support for threads and for C++ exceptions. We have focused
on filesystem and socket support (50 programs) and exercising the standard
C and C++ libraries shipped with DiOS. The test cases have all completed
successfully, and KLEE has identified all the annotated safety violations in these
programs.

5.3 API and ABI Coverage and Compatibility

Finally to evaluate our third goal, we have compiled a number of real-world
programs against DiOS headers and libraries and manually checked that they
behave as expected when executed in DiOS running on DiVM, fully isolated from
the host operating system. The compilation process itself exercises source-level
(API) compatibility with the host operating system.

We have additionally generated native code from the bitcode that resulted
from the compilation using DiOS header files (see Figure 3) and which we con-
firmed to work with DiOS libraries. We then linked the resulting machine code
with the libc of the host operating system (glibc 2.29 in this case). We have
checked that the resulting executable program also behaves as expected, con-
firming a high degree of binary compatibility with the host operating system.
The programs we have used in this test were the following (all come from the
GNU software collection):

– coreutils 8.30, a collection of 107 basic UNIX utilities, out of which 100
compiled successfully (we have tested a random selection of those),

– diffutils 3.7, programs for computing differences between text files and
applying the resulting patches – the diffing programs compiled and diff3

was checked to work correctly, while the patch program failed to build due
to lack of exec support on DiOS,

– sed 4.7 builds and works as expected,
– make 4.2 builds and can parse makefiles, but it cannot execute any rules due

to lack of exec support,
– the wget download program failed to build due to lack of gethostbyname

support, the cryptographic library nettle failed due to deficiencies in our
compiler driver and mtools failed due to missing langinfo.h support.

6 Conclusions & Future Work

We have presented DiOS, a POSIX-compatible operating system designed to offer
reproducible execution, with special focus on applications in program verifica-
tion. The larger goal of verifying unmodified, real-world programs requires the
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cooperation of many components, and a model of the operating system is an im-
portant piece of the puzzle. As the case studies show, the proposed approach is a
viable way forward. Just as importantly, the design goals have been fulfilled: we
have shown that DiOS can be successfully ported to rather dissimilar platforms,
and that its various components can be disabled or replaced with ease.

Implementation-wise, there are two important future directions: further ex-
tending the coverage and compatibility of DiOS with real operating systems, and
improving support for different execution and software verification platforms. In
terms of design challenges, the current model of memory management for multi-
process systems is suboptimal, and there are currently no platforms on which
the exec family of system calls could be satisfactorily implemented. We would
like to rectify both shortcomings in the future.

Bibliography
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