
Compiling C and C++ Programs for Dynamic
White-Box Analysis?

Zuzana Baranová and Petr Ročkai

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{xbaranov,xrockai}@fi.muni.cz

Abstract. Building software packages from source is a complex and
highly technical process. For this reason, most software comes with build
instructions which have both a human-readable and an executable com-
ponent. The latter in turn requires substantial infrastructure, which helps
software authors deal with two major sources of complexity: first, gener-
ation and management of various build artefacts and their dependencies,
and second, the differences between platforms, compiler toolchains and
build environments.
This poses a significant problem for white-box analysis tools, which often
require that the source code of the program under test is compiled into an
intermediate format, like the LLVM IR. In this paper, we present divcc,
a drop-in replacement for C and C++ compilation tools which trans-
parently fits into existing build tools and software deployment solutions.
Additionally, divcc generates intermediate and native code in a single
pass, ensuring that the final executable is built from the intermediate
code that is being analysed.

1 Introduction

Automation is ubiquitous and essential, and this is no different in software en-
gineering. Processes which are automated are cheaper, they reduce the chances
of human error and are generally much more repeatable than processes which
involve manual steps. Program compilation is one of the earliest software engi-
neering tasks to have been automated. In addition to its intrinsic merits, build
automation forms a key component in other process automation efforts within
software engineering: automatic testing, continuous integration and continuous
deployment, to name a few.

Another area of software engineering which can greatly benefit from au-
tomation is correctness and performance analysis of programs. Of course, this is
a highly non-trivial problem and is the focus of intense research. A number of
research tools exist and some of them aspire to eventually become production-
ready. However, neither program source code nor the resulting machine code is

? This work has been partially supported by the Czech Science Foundation grant
No. 18-02177S.



unit 1 source object code

headers libraries executable

unit 2 source object code

compiler linker

Fig. 1. The process of building an executable from 2 source files.

very convenient for automated analysis: instead, tools prefer to work with in-
termediate representations, such as LLVM.1 Analysis tools fall into two coarse
categories: static and dynamic. The latter are usually significantly more difficult
to integrate into the workflows of large software projects – a deficiency which
we aim to address.

Programming languages come in two basic flavours: interpreted and compiled.
In the former case, the program is executed directly in its source form. However,
interpretation is often deemed inefficient and many programs are written in
languages which are first translated into machine code. Individual source files are
compiled into object code (a form of machine code which is suitable for linking –
the process of combining multiple compilation units to form a single program).
The process that encompasses both compilation of the individual translation
units, as well as the subsequent linking is then known as building (see Figure 1).
A number of programs and/or libraries may result from a single build.

Since the build process is often complex, software implemented in compiled
languages – especially C and C++ – usually ships with comprehensive build
instructions which are automatically processed by a build system. Besides sim-
ply invoking the compiler and the linker, those build instructions often deal
with building the software on different platforms and operating systems, locat-
ing build-time dependencies2 and checking that a suitable version is correctly
installed and so on.

1.1 Motivation

One of the first tools which is discovered in the configuration phase of a build
is the system C compiler: it is common practice to use the compiler to perform
subsequent platform checks. It is typically assumed that the compiler used in

1 Of course, tools which work with machine code, known as black-box tools, do exist,
but their use in software development is limited – they are mainly used in software
forensics. In this paper, we focus on white-box methods, which work with source
code or an intermediate representation thereof.

2 A separate (often third-party) software package which needs to be installed in the
system before the build can proceed – usually a library, sometimes a tool used in
the build process.

2



the configuration phase of the build is the same as the compiler used to build
the software package itself.3

Naturally, we would like to take advantage of existing build automation to
obtain intermediate code (in our case LLVM IR) which can then be used for cor-
rectness and performance analysis. In ideal circumstances, such analysis would
also be fully automated and incorporated into the continuous integration process.
However, even when employed in mostly manual processes, it is extremely useful
to always have the requisite and up-to-date intermediate form available. For this
reason, we would like to seamlessly and automatically produce this intermediate
form alongside standard libraries and executables.

There is a large number of tools which can benefit from improving the process
of obtaining LLVM bitcode for entire programs. Tools that perform dynamic
analysis can benefit the most.4 Some of the tools in this category that use LLVM
as their input representation are: the symbolic executor KLEE [3], the slicing-
based bug hunting tool Symbiotic [4], the software model checker DIVINE [2] or
the MCP model checker [13]. Likewise, stateless model checkers for weak memory
models like Nidhugg [1] and RCMC [6] would be significantly easier to use on
test cases that use external libraries. Similar benefits apply to bounded model
checkers like LLBMC [12] or the LLVM-based IC3 tool VVT [5].

An important consideration is that very few of these tools offer comprehensive
support for the standard C library, while support for the C++ standard library
or for the widely used POSIX interfaces is even less frequent. Unfortunately, using
a tool like divcc to build the system C library (libc) into a usable bitcode form
is still a daunting task and it is not clear whether such bitcode could be sensibly
used with any of the abovementioned tools.

Linking an analysis-friendly C library into the bitcode version of the program
(providing bitcode definitions of functions that normally come from the system
libc) effectively side-steps the problem. One of the goals of divcc is to make
such substitution easy: in Section 3.5, we describe a variant of divcc which
supplies the bitcode for standard C and C++ libraries provided by DiOS [11].
Out of the tools mentioned above, DiOS and the libraries it includes have been
successfully ported to KLEE and DIVINE.

1.2 Related Work

A number of tools with related goals to divcc already exist. If we focus on LLVM-
based tools, the most well-known tool which integrates white-box analysis into
the standard build process is perhaps scan-build [7]. This tool shares the same
fundamental technique of replacing the C/C++ compiler with a wrapper which,
in this case, directly executes the clang-analyzer tool on each source file after
compiling it using a standard compiler.

3 Not doing so could lead to configuration mismatches between the two compilers
causing build failures, or worse, miscompilation.

4 This is true even in cases where such tools can work with partial programs – i.e. pro-
grams which use functions whose definitions are not available to the tool; however,
this mode of operation negatively affects the precision of the analysis.

3



In the scan-build workflow, the compiler is only overridden temporarily,
during the execution of make or another build tool – it is not in use during project
configuration. This means that the compiler wrappers used by scan-build can
be somewhat more lax about matching the behaviour of the underlying compiler
perfectly. It is also simpler in the sense that it does not need to create persistent
artefacts and bundle them with standard build products.

Another related tool, this time from the CBMC [8] toolkit is goto-cc, which
is a gcc-compatible compiler which however does not produce executable binaries
at all. For this reason, it rather heavily deviates from the behaviour of a standard
compiler and as such can only work with comparatively simple build systems,
which do not invoke external tools on their build products nor do they execute
intermediate helper programs that were compiled as part of the build process.

An important source of inspiration in our effort was the link time optimiza-
tion [10] subsystem of LLVM, which uses a special section in object files5 to
store the bitcode which resulted from compiling the corresponding source unit.
In this case, the goal is not program analysis as such, but late-stage program
optimization: interprocedural optimization passes can operate more efficiently if
they see the entire program at once, instead of just a single unit at a time.

A tool perhaps most closely related to divcc is known as wllvm (where the
‘w’ stands for whole-program). Like many of the previously mentioned tools,
wllvm provides a wrapper for the compiler which performs additional work – in
this case, in addition to compiling the unit in a standard way, it runs the compiler
again but instructs it to produce bitcode instead of machine code. Unlike the link
time optimization system, this bitcode is not stored in the object file – instead,
it creates a hidden file next to the original object and embeds the absolute path
to the bitcode file in a section of the object file. Subsequently, a special tool
called extract-bc needs to be used to extract those paths from a build product
(a library or an executable) and link it into a single bitcode unit.

The approach taken by wllvm has a number of downsides: first, the creation of
hidden files deviates from standard compiler behaviour, and sometimes interferes
with the operation of build configuration tools. Second, even after installation
into a target location, the build products refer to files present in the original build
directory which therefore cannot be cleaned up as would be usual, making builds
of systems which consist of multiple independent packages more difficult and
error-prone. The wllvm tool offers workarounds for both these problems, though
they are not free of their drawbacks. Even then, integration into automated build
orchestration systems which build and package individual components, often in
a distributed computing environment without shared file systems, would be very
difficult, if at all feasible. On the other hand, the wllvm approach has one major
upside: there is no need to perform any additional work during the linking stage
of the compilation, since the wllvm-specific sections are correctly merged by a
standard linker, somewhat simplifying the implementation.

5 And subsequently also in static libraries, which on POSIX systems are simply archives
of object files.

4



The whole problem is side-stepped by tools such as valgrind [9], which work
directly with machine code and hence do not need any special tooling to integrate
into build systems – at most, they re-use existing mechanisms to create debug-
enabled builds. Finally, middle ground is occupied by the clang sanitizers family
of dynamic analysis tools. Those tools are integrated in standard compilers (with
support in both clang and gcc), but require special builds which differ from
standard debug builds in the compiler flags passed to the compiler. They also
require special versions of runtime libraries, which are usually shipped with the
compiler in question.

1.3 Contribution

Our main contribution is an open-source tool, divcc,6 which serves similar pur-
pose as wllvm but mitigates its problems by taking the LTO-like approach of
embedding the entire bitcode in object, library and executable files. Addition-
ally, unlike wllvm, our tool first translates the input C or C++ code into bitcode
and then compiles that bitcode into native code, saving effort and reducing the
chance of discrepancies between the bitcode and the corresponding machine code.

Moreover, our approach allows analysis tools to provide their own header
files and bitcode libraries, overriding the host system. This is crucial in scenarios
where strict verification is desired, ensuring that only the functionality fully
covered by the verification tool is made available to the program during build
configuration. Finally, we have evaluated the usability and performance of divcc
on a number of software packages. We report the results of this evaluation in
Section 4.

2 Preliminaries

In this section, we will explain the terms and concepts that are in more-or-less
common use and which are directly relevant to the remainder of this paper, most
prominently Section 3.

2.1 Storing Machine Code

On UNIX systems, the standard format for storing machine code (i.e. the bi-
nary code understood by the CPU) is ELF, short for Executable and Linkable
Format. It is the common format for representing files that figure in the process
of compilation, such as object files, executables, or libraries.

During the process of building software, machine code exists in a number
of related, but distinct forms. It is first generated by the compiler in the form
of object code, which is usually stored in an object file. This form of the code
is relocatable, meaning the routines and variables stored in the file have not
been assigned their final addresses. A number of such object files can be bun-
dled together, unaltered, to form a static library (also known as an archive),

6 Source code & supplementary material at https://divine.fi.muni.cz/2019/divcc

5



using a special program – ar. Finally, object files and archives can be linked
into executables or shared libraries. This final step is performed by another pro-
gram, a linker (often known as ld) and consists of resolving cross-references and
performing relocations.

The data and code in an ELF file is split into multiple sections. There are sev-
eral well-known sections that have special roles in ELF files, the most important
of which are:

– .text - contains instructions (machine code) of the program,
– .data and .rodata - constant-initialized data, e.g. string literals,
– .bss - zero-initialized data (the zeroes are not stored in the file).

However, there are no significant restrictions on the number or the names of
individual sections. In particular, operating systems or compiler toolchains can
create or recognize additional sections with the semantics of their choosing.

2.2 Compiler Architecture

Most C and C++ compilers follow a fairly standard architecture, which is de-
picted in Figure 2. The entire process is managed by a driver, which decides
which stages and in what order need to be invoked. The responsibilities of the
individual components are as follows:

1. the preprocessor reads the input source file and any header files it may refer
to (via #include directives) and produces a single self-contained source file,

2. the frontend parses and analyses the source file produced by the preprocessor
and generates an intermediate representation out of it,

3. the middle end performs transformations (mainly optimization) on the in-
termediate format, generating a new version thereof,

4. the backend, or code generator, translates the optimized intermediate rep-
resentation into object code (i.e. relocatable machine code).

The linker is technically not a part of the compiler: in most cases, it is a
separate program. However, it is usually the compiler driver that is responsible
for executing the linker with the correct arguments – the linker then simply
performs the tasks requested by the compiler. The selection and order of ob-
ject files (including the system-specific components linked into every program,
like crt0.o) and libraries (including system libraries like libc) to be linked is
therefore the responsibility of the compiler driver.

Finally, an important consideration is the mechanics of archive linking: unlike
shared libraries, which are indivisible and linked into each program in their
entirety, or not at all, static libraries retain individual object files. By default,
the linker will only include those object files from each archive that are required
to provide symbols referenced by files already included. This optimization can
influence program behaviour, because unlike shared libraries, global constructors
which are defined in object files that are not referenced by the program (directly
or indirectly) will not run. It is therefore important to replicate this behaviour
in the bitcode linker component of divcc.

6



source preprocessor source frontend IR middle end

headers machine code codegen IR

libraries linker executable

Fig. 2. The architecture of a typical compiler. The rounded boxes represent compiler
components, the squares represent data. Dashed boxes only exist as internal objects
within the compiler and will not be written into files unless requested by the user or
by the build system. Out of the dashed boxes in the picture, typically only object code
is written into a file.

2.3 Build Systems

Non-trivial software tends to be composed of numerous source files and header
files, which are often organized into multiple libraries and executables. In ad-
dition to the source code shipped with the software itself, there are usually
dependencies on external libraries and header files, which may be either part of
the operating system, or provided by third parties as separate software packages.

Not only is it repetitive and error-prone for the programmer to carry out
this process manually, it is also vital to automate it if the software is expected
to be built by third parties, who are not sufficiently familiar with it. Many
build automation systems have been proposed and implemented. In most cases,
the software package is accompanied by build instructions which are read and
performed by the build system or build tool in question. For instance, the make

build system reads a file called Makefile which describes the steps for compiling
and linking source code. The build process carried out by a typical build system
is split into 2 phases:

1. Build configuration is mainly concerned with inspecting the build platform.
i. The tool, taking into account the build instructions, examines the soft-

ware installed in the system, to see what is available and whether it is
possible to build the program at all.

ii. To this end, it may attempt to compile and sometimes run feature tests –
essentially tiny test programs; if the compilation fails, the tool concludes
that the tested functionality is unavailable. Alternatively, it may contain
a database of known systems and their properties.

iii. At the end of the build configuration phase, the build tool will store the
configuration information (like compiler flags and feature macro defini-
tions) in a form which can be used during compilation.

2. The build proper, in which the software is compiled and linked.7 The build
system performs the steps specified in the build instructions to produce

7 Most build systems also attempt to speed up repeated builds by avoiding re-
compiling files that are unchanged (and whose dependencies also remain up-to-date).
This capability is important during development and testing, though of course it adds
further complexity to the process.

7



libraries and executables which make up the package. The instructions are
usually quite abstract and the particulars of tool orchestration are left to
the build system.

3 Design & Implementation

In this section, we first summarize the functional requirements for a tool which
would allow us to seamlessly integrate white-box dynamic analysis into existing
build systems and workflows, then we spell out the specific design choices we
made, describe the implementation, and discuss its limitations.

3.1 Functional Requirements

Our primary requirement when designing the tool was that it would serve as
a drop-in replacement for a C (and C++) compiler. There are multiple issues
that need to be considered, mainly to ensure compatibility with existing build
systems. Our list of functional requirements for divcc is, therefore, as follows:

– compatible interface – avoiding the need to alter existing build instructions,
– compatible output – the build system expects that certain files are created,

in a certain format so that it can work with them further,
– compilation – source code is compiled into intermediate and native code
– linking – both intermediate and native code is linked into executables and

shared libraries,
– archive support – the handling of intermediate code in archives is semanti-

cally equivalent to the handling of object code therein,
– object bitcode – bitcode in object files needs to be stored in a format that

can be linked to form shared libraries and executables,
– loadable bitcode – the final result must be in a format that the analysis tool

can use as input, ideally with no changes to the tool
– single pass operation – no repeated front-end and middle end invocation,

minimizing the overhead introduced by the tool into the build process.

Additionally, we have a few non-functional requirements:

– user-friendliness – this extends the functional requirement that the pre-
existing build instructions do not need to be changed,

– re-use existing compiler code (CLang and LLVM),
– make it as easy as possible to keep up with changes in CLang and LLVM.

3.2 Intended Use

The expectation is that for the user, the only difference in building their pro-
grams is telling the build system to use divcc as the C compiler (and divc++

as the C++ compiler if the software contains C++ source code), for example:

8



$ wget http://ftp.gnu.org/gnu/gzip/gzip-1.8.tar.gz
$ tar xzf gzip-1.8.tar.gz
$ cd gzip-1.8 && ./configure CC=divcc && make
$ echo hello world | ./gzip - > hello.gz
$ divine check --stdin hello.gz ./gzip -f -d -
$ divcc-extract gzip gzip.bc
$ klee -exit-on-error gzip.bc hello.gz

Fig. 3. An example use of divcc to build and analyse gzip.

– ./configure CC=divcc CXX=divc++ (with autotools-based builds)
– cmake -DCMAKE C COMPILER=divcc -DCMAKE CXX COMPILER=divc++

– make CC=divcc CXX=divc++ (with plain make-based builds)

The remainder of the build process should be unaffected. If the analysis tool
supports loading of bitcode from executables, it can be directly used. Other-
wise, the divcc-extract helper script can extract a standalone bitcode (.bc)
file corresponding to the given executable. The entire process is illustrated in
Figure 3.

3.3 Design

To achieve our goals, we need to modify the flow of data through the compiler in
a few places (the original data flow is illustrated in Figure 2, the modifications are
highlighted in Figure 4). First, we need to obtain the intermediate representation
after the middle end, so that we can store it alongside machine code in the object
file. This also means that we need to alter the path on which the object file is
written by the compiler, so that we can actually include the bitcode section8

in it. The implementation of these alterations in the data flow is explained in
Section 3.4. The other component which needs to be modified is the part of the
compiler driver which supervises the invocation of the linker.

1. Like with the changes in the compiler proper, we need to alter the data flow
– this time, to extract the bitcode from constituent object files and libraries,
and to include linked bitcode in the output of the linker.

2. We need to include a new component: a bitcode linker, which combines the
input bitcode files into a single bitcode module which can be inserted into
the output of the linker.

As noted in Section 2.2, the bitcode linker needs to follow the semantics of
the native linker, specifically when dealing with archives. While a bitcode linker
is part of LLVM, this linker can only combine individual modules and does not
directly support linking bitcode archives, much less archives which consist of
object files with embedded bitcode. There are essentially three options:

8 We use a section named .llvmbc, which is the same as the LTO subsystem. This
section is recognized by some LLVM tools and is the closest there is to a ‘standard’
way to embed bitcode in object files.

9



source file headers
bitcode

native code

object bitcode

object code

linked bitcode

native code

library

frontend

middle end object file executable

codegen

linker

Fig. 4. The flow of the compiled code within divcc. The source code along with in-
cluded header files is processed by the frontend and then middle end to generate LLVM
IR. This IR is used by the code generator to produce object code, stored within the
same object file. The linker then separately combines bitcode and machine code from
object files and libraries to produce an executable which again contains both executable
machine code and analysable bitcode.

1. Re-use the LTO infrastructure, which uses linker plugins to perform bitcode
linking of modules selected by the native linker. This approach has significant
portability issues, since it requires the ability to extend the native linker.

2. Use an auxiliary section in a fashion similar to wllvm to learn which objects
were included by the native linker and perform the link based on those.

3. Extend the existing module-based bitcode linker to handle archive linking
semantics.

Even though not the simplest, we have taken option 3, since it has an impor-
tant advantage of also working with archives which only contain bitcode which
is not accompanied by any native code.9

3.4 Implementation

The implementation was done in C++ for the following reasons:

– to gain direct access to individual CLang components and utility functions,
– to allow distribution of divcc as a self-contained, statically linked binary,
– to avoid the overhead associated with fork-based wrappers.

Like upstream CLang, divcc will by default use fork and exec to invoke
the system linker for the actual linking of object files. However, it also includes
experimental support for using the lld linker as a library, avoiding the need
to interface with external programs altogether. The construction of the correct
linker command is delegated to the upstream CLang driver. Likewise, processing
command-line switches is mainly done by existing CLang code (making interface

9 This is important with e.g. libraries provided by DiOS, which are normally only
compiled into bitcode and packaged into bitcode archives.

10



compatibility a fairly straightforward matter), as is, obviously, all the heavy
lifting of the compilation process itself.

A relatively minor but notable issue is that C++ programs need to link to
additional libraries (the C++ runtime support library and the C++ standard
library, and any system libraries these two language-specific libraries depend on
– usually at least libpthread). For this reason, C++ compilers usually provide
two binaries, one for compiling and linking C programs and another for C++
programs, the main difference being precisely the libraries which are linked into
the program by default. A common solution, which divcc adopts as well, is to
provide a single binary, which decides whether to use C or C++ mode based on
the name it was executed with, so that divc++ can be made a link to divcc.

The final implementation issue is related to functions with variable argu-
ments. LLVM provides a special instruction (va arg) which implements access
to arguments passed to a function through ellipsis. Unfortunately, current ver-
sions of CLang do not emit this instruction and instead produce an architecture-
specific instruction sequence which directly reads the arguments from machine
registers or the execution stack. In the context of program analysis, this is far
from optimal – for this reason, we alter the behaviour of CLang so that divcc

instead emits the va arg LLVM instruction.

3.5 Library Substitutions

As mentioned in Section 1.1, it is sometimes desirable to provide alternate,
bitcode-only versions of system libraries to make analysis of the resulting bitcode
easier. We provide an alternate version of divcc, called dioscc, that links C pro-
grams to the DiOS libc and C++ programs also to DiOS versions of libc++

and libc++abi. Likewise, DiOS versions of header files which belong to those
libraries are used during compilation. It is straightforward to build additional
variants of divcc with different substitutions.

The most important issue which relates to library substitutions is ABI com-
patibility – the property that both libraries use the same in-memory layouts for
data structures, same numeric values for various named constants and so on.
If ABI compatibility is broken, either the bitcode or the native executable will
misbehave. DiOS takes special precautions to make its libc binary compatible
with the one provided by the host system.10

Besides bitcode libraries, dioscc includes native versions of libc++ and
libc++abi, since different implementations of C++ libraries are usually not
binary compatible with each other, and installing multiple versions of the C++
standard library is rather inconvenient. Finally, another native library bundled
with dioscc is libdios-host.a, which contains native versions of functions
which are present in the DiOS libc but may be missing from the system one.

Please note that unlike dioscc, divcc uses standard system headers, like
any other compiler would, and does not supply bitcode definitions for functions

10 Unfortunately, libpthread, which is also provided by DiOS, is not yet ABI compat-
ible with the host version – see also Section 4.2.

11



user program native code execution

DiOS headers bitcode host libc

DiOS libraries linked bitcode analysis

Fig. 5. The compilation process with library substitutions enabled.

from libc. It is up to the analysis tool in question to deal with the incomplete
bitcode and the platform ABI defined in system headers.

3.6 Limitations

The main compromise in the current implementation is related to shared li-
braries. When a binary is linked to a shared library, the machine code version
is linked in the usual way. However, we still link the bitcode statically, because
no analysis tools can currently resolve dynamic dependencies and automatically
load the bitcode from shared libraries.11 The remaining limitations are mainly
due to external causes:

1. Inline assembly is compiled to machine code as normal, but the LLVM IR will
simply retain the architecture-specific assembly instructions, compromising
its usefulness for analysis.12

2. When used with DiOS, builds may fail due to missing API coverage or may
produce crippled binaries due to ABI compatibility issues. These problems
need to be addressed in DiOS.

Finally, a limitation of the implementation (i.e. not inherent in the design)
is that divcc currently only supports systems which use the ELF format for
storing executable code.

4 Evaluation

In this section, we introduce the projects selected for evaluation, report on our
findings and note issues we encountered with the build processes. We also provide
measurements of build time for each of the packages (shown in Table 1).

11 This decision may be reversed in a later version, if the situation with support for
shared libraries in analysis tools improves.

12 In some cases, it may be possible to reconstruct platform-neutral LLVM IR using the
Remill decompilation library. This is especially pertinent to legacy software which
may use inline assembly in applications which would be better served with compiler
built-in functions. We will investigate using Remill in this capacity as an option in
the future.

12



4.1 Summary

To evaluate our implementation, we have taken 7 existing C and C++ projects
and built them from source using their respective build systems (which meant
either CMake or configure, followed by make). Out of the tested projects, Eigen
and zlib were built using CMake, the remaining projects used an autotools con-
figure script which generates a Makefile.

Table 1. Total elapsed time for the configuration and compilation phases of
different software packages. The clang and gcc columns are baseline compilers
which only produce native executables. The divcc and dioscc columns are
variants of the tool proposed in this paper (divcc uses native system libraries
with no bitcode, dioscc uses DiOS replacements for libc and libc++). We
included wllvm, which is an existing tool with similar goals to divcc, as another
reference point. The make command was run with 4 jobs in parallel using -j4.

gcc clang divcc dioscc wllvm

coreutils 1:33 + 0:22 2:28 + 0:31 3:59 + 0:42 3:46 + 0:45 7:01 + 1:04
db 0:18 + 0:20 0:33 + 0:26 0:43 + 0:45 0:51 + 0:47 1:11 + 0:53

eigen 0:14 + 0:00 0:21 + 0:00 0:27 + 0:00 0:30 + 0:00 0:34 + 0:00
gzip 0:21 + 0:02 0:45 + 0:04 1:04 + 0:05 1:13 + 0:05 2:08 + 0:09

libpng 0:05 + 0:09 0:10 + 0:10 0:16 + 0:11 0:17 + 0:12 0:28 + 0:18
sqlite 0:05 + 1:23 0:11 + 2:03 0:17 + 2:08 0:20 + 2:12 0:27 + 3:24

zlib 0:02 + 0:01 0:03 + 0:02 0:05 + 0:03 0:05 + 0:03 0:06 + 0:04

Each project was built in 5 configurations: with divcc, dioscc, CLang ver-
sion 8, GCC version 8.3 and wllvm. All tools have built all the projects success-
fully, with some caveats described in Section 4.2.

– coreutils 8.31 is a set of over 100 GNU core utilities and various helper
programs for file and text manipulation (such as cat or ls) and shell utilities
(env, pwd, and others),

– gzip 1.10 – a data compression and decompression utility,
– Eigen 3.3.7 [C++] is a header-only template library that provides linear

algebra structures, such as matrices and vectors and operations on them,
– SQLite 3.28.0 – a widely used SQL database engine for database management
– BerkleyDB 4.6.21 – another database management library, more closely cou-

pled with the application
– libpng 1.6.37 – a library for reading and writing PNG image files
– zlib 1.2.11 – a compression library, included because it is required by libpng

The measurements (Table 1) show that the implementation is slightly slower
than upstream CLang, in both configuration and building of the software, which
is not surprising as bitcode manipulation incurs overhead. This is, however,
not a significant cost when compared to wllvm, which compiles source code
in two passes. The times for wllvm also exclude the additional time required

13



to link the bitcode when extract-bc is executed and the reason for the time
advantage of wllvm when configuring Berkeley DB is that it had to be given
the WLLVM CONFIGURE ONLY=1 flag during configuration, as the bitcode files it
otherwise produces were confusing the build system. Finally, GCC proved to
be considerably faster than CLang and the remaining compilers (which are all
based on CLang).

4.2 Package Details

Eigen This was the only project of the selection which uses CMake exclusively.
Since it is also a header-only library, the build instructions mainly exist to build
tests (with make buildtests) or build and run them (make check).13 As some
of the tools we used did not manage to build all test files, we did not include
compilation of the tests in the time measurements.

Berkeley DB In this case, shared libraries have been disabled (using the
--disable-shared configure flag), to include at least one statically-built library
in the evaluation. In dioscc, several of the binaries result in a segmentation fault
when run. This is due to the use of the libpthread library, as the system version
is not ABI compatible with the DiOS libpthread.

In this case, it was also necessary to run the configure script specially for
wllvm, passing WLLVM CONFIGURE ONLY=1 in the environment.

SQLite This package was configured with --disable-dynamic-extensions be-
cause DiOS (and hence dioscc) does not currently support the dlopen family
of functions. SQLite further exhibited the same problem as Berkeley DBD when
built with dioscc due to ABI incompatibility of libpthread.

libpng This package was partly included in the evaluation since it has a depen-
dency on a 3rd-party library, namely zlib. We built zlib version 1.2.11 using
the same tool as libpng and provided the resulting libz.so or libz.a to libpng

at configure time – in this case, we built both a static and a dynamic variant of
libpng (along with a matching build of zlib).

5 Conclusions

We have designed and implemented a tool which makes integration of dynamic
program analyses based on LLVM into the build and development processes sig-
nificantly easier. Our design takes the best ideas from a number of related tools
and combines them in a unique way to offer seamless integration into existing
processes. Moreover, divcc optionally integrates with DiOS, making the resulting
bitcode more analysis-friendly without compromising the guarantees stemming
from the use of the same bitcode for native code generation and for analysis.
Finally, we have evaluated divcc on a number of existing software packages,
establishing its practicality and efficiency.

13 This is the reason for zero build time of Eigen for all compilers.

14



Bibliography

[1] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and
K. Sagonas. Stateless model checking for TSO and PSO. Acta Informatica,
54(8):789–818, 2017. doi: 10.1007/s00236-016-0275-0.

[2] Z. Baranová, J. Barnat, K. Kejstová, T. Kučera, H. Lauko, J. Mrázek,
P. Ročkai, and V. Štill. Model checking of C and C++ with DIVINE 4.
2017.

[3] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In OSDI,
pages 209–224. USENIX Association, 2008.

[4] M. Chalupa, M. Vitovská, M. Jonáš, J. Slabý, and J. Strejček. Symbiotic
4: Beyond reachability. In TACAS, volume 10206 of LNCS, pages 385–389.
Springer, 2017.

[5] H. Günther, A. Laarman, and G. Weissenbacher. Vienna Verification Tool:
IC3 for parallel software (competition contribution). In TACAS, pages 954–
957, 2016. doi: 10.1007/978-3-662-49674-9 69.

[6] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis. Effective
stateless model checking for C/C++ concurrency. Proc. ACM Program.
Lang., 2(POPL):17:1–17:32, 2017. doi: 10.1145/3158105.

[7] T. Kremenek et al. scan-build, 2009. URL https://clang-analyzer.

llvm.org/scan-build.html.
[8] D. Kroening and M. Tautschnig. CBMC – C bounded model checker. In

TACAS, pages 389–391. Springer, 2014. doi: 10.1007/978-3-642-54862-8 26.
[9] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dy-

namic binary instrumentation. In PLDI, 2007.
[10] T. L. Project. LLVM Link Time Optimization, 2019. URL https://www.

llvm.org/docs/LinkTimeOptimization.html.
[11] P. Ročkai, Z. Baranová, J. Mrázek, K. Kejstová, and J. Barnat. Repro-

ducible execution of POSIX programs with DiOS. In Software Engineering
and Formal Methods, LNCS. Springer, 2019. URL https://divine.fi.

muni.cz/2019/dios/. To appear.
[12] C. Sinz, F. Merz, and S. Falke. LLBMC: A bounded model checker for

LLVM’s intermediate representation. In TACAS, volume 7214 of LNCS,
pages 542–544. Springer, 2012. doi: 10.1007/978-3-642-28756-5 44.

[13] S. Thompson and G. Brat. Verification of C++ flight software with the
MCP model checker. In 2008 IEEE Aerospace Conference, pages 1–9, 2008.
doi: 10.1109/AERO.2008.4526577.

15


