Local Nontermination Detection
for Parallel C4++ Programs

Vladimir Still Ji¥{ Barnat

5 ParaDiSe

Parallel & Distributed

:”:' Systems Laboratory
Masaryk University

Brno, Czech Republic

20th Septempler 2019

. . .}E
Motivation A3

“Would you trust a program which was verified, but not tested?”

1/14

. . .}E
Motivation A3

“Would you trust a program which was verified, but not tested?”

DEMO: DIVINE

1/14

. . 0
Motivation B

“Would you trust a program which was verified, but not tested?”

DEMO: DIVINE

. at the very least, we should not blindly trust safety checking

1/14

Safety Checking Parallel Programs B |

m targeting assertion violations, memory corruption, data races
m primarily caused by thread interleaving
m or by relaxed memory

2/ 14

Safety Checking Parallel Programs B |

m targeting assertion violations, memory corruption, data races
m primarily caused by thread interleaving
m or by relaxed memory

m if the program might not terminate. ..

m the tool might not terminate
m or it might report there are no safety violations

2/ 14

Safety Checking Parallel Programs B |

m targeting assertion violations, memory corruption, data races
m primarily caused by thread interleaving
m or by relaxed memory

m if the program might not terminate. ..

m the tool might not terminate
m or it might report there are no safety violations (correctly)

2/ 14

Safety Checking Parallel Programs B |

targeting assertion violations, memory corruption, data races
primarily caused by thread interleaving
or by relaxed memory

if the program might not terminate. ..

m the tool might not terminate
m or it might report there are no safety violations (correctly)

not enough for parallel programs

2/ 14

(Non)Termination Checking [i .

m check that the whole program terminates

3/14

| (Non)Termination Checking [i .

m check that the whole program terminates

m or checks that certain parts of it terminate

m critical sections
m waiting for condition variables, threads. ..
m user-defined parts

3/14

. . . 10
Local Nontermination Detection for Parallel Programs B3

B we aim at nontermination caused by unintended parallel interactions

4/14

. . . 10
Local Nontermination Detection for Parallel Programs B3

B we aim at nontermination caused by unintended parallel interactions
m not at complex control flow & loops

4/14

. . . o
Local Nontermination Detection for Parallel Programs B

we aim at nontermination caused by unintended parallel interactions
not at complex control flow & loops

should be easy to specify

should not report nontermination spuriously

should be useful for analysis of services/servers

4/14

. . . o
Local Nontermination Detection for Parallel Programs B

we aim at nontermination caused by unintended parallel interactions
not at complex control flow & loops

should be easy to specify

should not report nontermination spuriously

should be useful for analysis of services/servers

m build on explicit-state model checking — finite-state programs
(with possibly infinite behaviour)
m user can specify what to check

bool x = true;
while (true) { x = !x; }

~(J)

4/14

What is Nontermination? B

10

mutex mtx;
void w() { mutex.lock(); x++; mutex.unlock(); }
int main() { thread tO(w), t1(w); t0.join(); tl.join(); }

Does this program terminate?

5/ 14

What is Nontermination? B

10

mutex mtx;
void w() { mutex.lock(); x++; mutex.unlock(); }
int main() { thread tO(w), t1(w); t0.join(); tl.join(); }

Does this program terminate? ... yes

5/ 14

What is Nontermination? B

atomic< bool > spin_lock;
void w() {
while (spin_lock.exchange(true)) { /* wait */ }
X++;
spin_lock = false;

}
int main() { thread tO(w), t1(w); t0.join(); tl.join(); }

Does this program terminate?

6/ 14

What is Nontermination? B

atomic< bool > spin_lock;
void w() {
while (spin_lock.exchange(true)) { /* wait */ }
X++;
spin_lock = false;

}
int main() { thread tO(w), t1(w); t0.join(); tl.join(); }

Does this program terminate? ... yes

6/ 14

What is Nontermination? B

atomic< bool > spin_lock;
void w() {
while (spin_lock.exchange(true)) { /* wait */ }
X++;
spin_lock = false;

}
int main() { thread tO(w), t1(w); t0.join(); tl.join(); }

Does this program terminate? ... yes

But there is an infinite run:
[t0: spin_lock.exchange(true) - false]
[t1: spin_lock.exchange(true) - truel® (repeats infinitely)

6/ 14

What is Nontermination? B

atomic< bool > spin_lock;
void w() {
while (spin_lock.exchange(true)) { /* wait */ }
X++;
spin_lock = false;

}
int main() { thread tO(w), t1(w); t0.join(); tl.join(); }

Does this program terminate? ... yes

But there is an infinite run:
[t0: spin_lock.exchange(true) - false]
[t1: spin_lock.exchange(true) - truel® (repeats infinitely)

but only because t0 is not allowed to run

6/ 14

What is Nontermination? B

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }

X4+

3

spin_lock = false;

}

Does every wait end?

7/14

What is Nontermination? B

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }

X4+

3

spin_lock = false;

}

Does every wait end? yes

7/14

What is Nontermination? B

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }

X4+

3

spin_lock = false;

}

Does every wait end? yes?

7/14

What is Nontermination? B

10

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }
x++;

3

spin_lock = false;

}

Does every wait end? yes?

[t0: spin_lock.exchange(true) -+ falsel

([t1: spin_lock.exchange(true) - true]
[t0: x++]

[t0: spin_lock = false]
[t0: spin_lock.exchange(true) - false])”

both threads can run

7/14

What is Nontermination? B

[t0: spin_lock.exchange(true) - false]
([t1: spin_lock.exchange(true) - true]
[t0: x++]

[t0: spin_lock = false]

[t0: spin_lock.exchange(true) - false])”

m this run requires a scheduler which allows t1 to run only if t0 is in
the critical section

8/ 14

What is Nontermination? B

[t0: spin_lock.exchange(true) - false]
([t1: spin_lock.exchange(true) - true]
[t0: x++]

[t0: spin_lock = false]

[t0: spin_lock.exchange(true) - false])”

m this run requires a scheduler which allows t1 to run only if t0 is in
the critical section

m does not happen in reality

8/ 14

What is Nontermination? B

[t0: spin_lock.exchange(true) - false]
([t1: spin_lock.exchange(true) - true]
[t0: x++]

[t0: spin_lock = false]

[t0: spin_lock.exchange(true) - false])”

m this run requires a scheduler which allows t1 to run only if t0 is in
the critical section
m does not happen in reality

m for realistic schedulers an infinite run does not imply nontermination

8 /14

What is Nontermination? B

Nontermation

m a program does not terminate if it can reach a point from which it
cannot reach its end

9/14

What is Nontermination? B

Nontermation

m a program does not terminate if it can reach a point from which it
cannot reach its end

Resource Section

m a block of code with an identifier
m delimited in the source code

9/14

What is Nontermination? B

Nontermation

m a program does not terminate if it can reach a point from which it
cannot reach its end

Resource Section

m a block of code with an identifier
m delimited in the source code

Local Nontermation

m a resource section does not terminate if the program can reach a
point in the resource section from which it cannot reach the
corresponding resource section end

9/14

Detecting Nontermination E:

m a program does not terminate if it can reach a point from which it
cannot reach its end

10 / 14

Detecting Nontermination | &

m a program does not terminate if it can reach a point from which it
cannot reach its end

m detect nontrivial terminal strongly connected components

.IIIIIIIIIIIIIIII.

4

10 / 14

. . . no
Going Local: Active Resource Section Instances B

lock(ml)

<%%o_work_1

lock(m%l//(:>
<;zo_work_2

unlock(m2)

unlock(ml)

nd

O; O+ 0<0O

11/ 14

. . . no
Going Local: Active Resource Section Instances B

lock(ml)

‘ C
[
=]
[
(]
O
R
~
8
N
~

11/ 14

Going Local: Active Resource Section Instances [

lock(ml) lock(ml)

(P/ i ARSI
do_work_1 do_work_1

lock(le/O\lrock(mQ) ?
r@ \ 9 ARSI 1 - :LQC,k(,mg),ﬁ‘
: do_work_2 :: do_work_ 2 : Q
|
|

do_work_2 !

(N | | |

- - = = = Sl it e B ‘ ‘
lock (m2 lock(m2 e G
unlock(m2) unlock (m2) %nlock(m@

unlock(ml) Junlock(m1)

e
Qend X
O

11/ 14

Detecting Local Nontermination E:

m a resource section does not terminate if the program can reach a
point in the section from which it cannot reach the corresponding
resource section end

12/ 14

Detecting Local Nontermination

m a resource section does not terminate if the program can reach a
point in the section from which it cannot reach the corresponding

resource section end

m mark edges in ARSIs as accepting

m detect fully accepting terminal strongly connected components

(FATSCC)

nontriv. terminal SCC,

.IIIIIIIIIIIIIIII.

12/ 14

Detection Algorithm B

m modified Tarjan’s algorithm for SCC decomposition: O(|G|)
m global nontermination has no overhead
m for local nontermination the graph can get bigger

13/ 14

_Detection Algorithm

m modified Tarjan’s algorithm for SCC decomposition: O(|G|)

m global nontermination has no overhead
m for local nontermination the graph can get bigger

Wall Time (in seconds)

local nonterm. [s]

10%

103

102

10!

10°

LR AL B B | P B R | AR B R AL
g R - A E
i oo]
[| .7 B
L ’ [= /|
= 2 o =
r og- L7 :
L /// -
E ,/ // A AE
;// Bﬁ A //’ A ;
F o L - &
[oA R]
L \HHM/ L \HHH“'...\ Lol rilH
10© 10t 102 10® 10*
safety [s]

13/ 14

. . 0
Resource Sections & Conclusions B

Source of resourcre sections

m either built-in (mutexes, condition variables, thread joining, ...)
m or user-provided (in source code; block of code, function end, ...)

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

. . 100
Resource Sections & Conclusions B

Source of resourcre sections

m either built-in (mutexes, condition variables, thread joining, ...)
m or user-provided (in source code; block of code, function end, ...)

Conclusion

m we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

. . 100
Resource Sections & Conclusions B

Source of resourcre sections

m either built-in (mutexes, condition variables, thread joining, ...)
m or user-provided (in source code; block of code, function end, ...)

Conclusion

m we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis

m built on explicit-state model checking — finite state space required

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

. . 100
Resource Sections & Conclusions B

Source of resourcre sections

m either built-in (mutexes, condition variables, thread joining, ...)
m or user-provided (in source code; block of code, function end, ...)

Conclusion

m we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis

m built on explicit-state model checking — finite state space required

m works also on programs which do not terminate

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

. . 100
Resource Sections & Conclusions B

Source of resourcre sections

m either built-in (mutexes, condition variables, thread joining, ...)
m or user-provided (in source code; block of code, function end, ...)

Conclusion

m we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis

m built on explicit-state model checking — finite state space required
m works also on programs which do not terminate

m open-source implementation

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

100
Resource Sections & Conclusions B

Source of resourcre sections

m either built-in (mutexes, condition variables, thread joining, ...)

m or user-provided (in source code; block of code, function end, ...)
Conclusion

m we have presented a novel technique which allows detecting bugs not

captured by safety (or LTL/CTL*) analysis

m built on explicit-state model checking — finite state space required

m works also on programs which do not terminate

m open-source implementation

m performance is underwhelming, but it can detect new class of bugs

m https://divine.fi.muni.cz/2019/1nterm/

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

