
Local Nontermination Detection
for Parallel C++ Programs

Vladimír Štill Jiří Barnat

Masaryk University
Brno, Czech Republic

20th Septempler 2019

Motivation

“Would you trust a program which was verified, but not tested?”

DEMO: DIVINE

. . . at the very least, we should not blindly trust safety checking

1 / 14

Motivation

“Would you trust a program which was verified, but not tested?”

DEMO: DIVINE

. . . at the very least, we should not blindly trust safety checking

1 / 14

Motivation

“Would you trust a program which was verified, but not tested?”

DEMO: DIVINE

. . . at the very least, we should not blindly trust safety checking

1 / 14

Safety Checking Parallel Programs

targeting assertion violations, memory corruption, data races
primarily caused by thread interleaving
or by relaxed memory

if the program might not terminate. . .
the tool might not terminate
or it might report there are no safety violations (correctly)

not enough for parallel programs

2 / 14

Safety Checking Parallel Programs

targeting assertion violations, memory corruption, data races
primarily caused by thread interleaving
or by relaxed memory

if the program might not terminate. . .
the tool might not terminate
or it might report there are no safety violations

(correctly)

not enough for parallel programs

2 / 14

Safety Checking Parallel Programs

targeting assertion violations, memory corruption, data races
primarily caused by thread interleaving
or by relaxed memory

if the program might not terminate. . .
the tool might not terminate
or it might report there are no safety violations (correctly)

not enough for parallel programs

2 / 14

Safety Checking Parallel Programs

targeting assertion violations, memory corruption, data races
primarily caused by thread interleaving
or by relaxed memory

if the program might not terminate. . .
the tool might not terminate
or it might report there are no safety violations (correctly)

not enough for parallel programs

2 / 14

(Non)Termination Checking

check that the whole program terminates

or checks that certain parts of it terminate
critical sections
waiting for condition variables, threads. . .
user-defined parts

3 / 14

(Non)Termination Checking

check that the whole program terminates

or checks that certain parts of it terminate
critical sections
waiting for condition variables, threads. . .
user-defined parts

3 / 14

Local Nontermination Detection for Parallel Programs

we aim at nontermination caused by unintended parallel interactions

not at complex control flow & loops
should be easy to specify
should not report nontermination spuriously
should be useful for analysis of services/servers

build on explicit-state model checking → finite-state programs
(with possibly infinite behaviour)
user can specify what to check

bool x = true;
while (true) { x = !x; }

x ¬x

4 / 14

Local Nontermination Detection for Parallel Programs

we aim at nontermination caused by unintended parallel interactions
not at complex control flow & loops

should be easy to specify
should not report nontermination spuriously
should be useful for analysis of services/servers

build on explicit-state model checking → finite-state programs
(with possibly infinite behaviour)
user can specify what to check

bool x = true;
while (true) { x = !x; }

x ¬x

4 / 14

Local Nontermination Detection for Parallel Programs

we aim at nontermination caused by unintended parallel interactions
not at complex control flow & loops
should be easy to specify
should not report nontermination spuriously
should be useful for analysis of services/servers

build on explicit-state model checking → finite-state programs
(with possibly infinite behaviour)
user can specify what to check

bool x = true;
while (true) { x = !x; }

x ¬x

4 / 14

Local Nontermination Detection for Parallel Programs

we aim at nontermination caused by unintended parallel interactions
not at complex control flow & loops
should be easy to specify
should not report nontermination spuriously
should be useful for analysis of services/servers

build on explicit-state model checking → finite-state programs
(with possibly infinite behaviour)
user can specify what to check

bool x = true;
while (true) { x = !x; }

x ¬x

4 / 14

What is Nontermination?

mutex mtx;
void w() { mutex.lock(); x++; mutex.unlock(); }
int main() { thread t0(w), t1(w); t0.join(); t1.join(); }

Does this program terminate?

. . . yes

5 / 14

What is Nontermination?

mutex mtx;
void w() { mutex.lock(); x++; mutex.unlock(); }
int main() { thread t0(w), t1(w); t0.join(); t1.join(); }

Does this program terminate? . . . yes

5 / 14

What is Nontermination?

atomic< bool > spin_lock;
void w() {

while (spin_lock.exchange(true)) { /* wait */ }
x++;
spin_lock = false;

}
int main() { thread t0(w), t1(w); t0.join(); t1.join(); }

Does this program terminate?

. . . yes

But there is an infinite run:
[t0: spin_lock.exchange(true) → false]
[t1: spin_lock.exchange(true) → true]ω (repeats infinitely)

but only because t0 is not allowed to run

6 / 14

What is Nontermination?

atomic< bool > spin_lock;
void w() {

while (spin_lock.exchange(true)) { /* wait */ }
x++;
spin_lock = false;

}
int main() { thread t0(w), t1(w); t0.join(); t1.join(); }

Does this program terminate? . . . yes

But there is an infinite run:
[t0: spin_lock.exchange(true) → false]
[t1: spin_lock.exchange(true) → true]ω (repeats infinitely)

but only because t0 is not allowed to run

6 / 14

What is Nontermination?

atomic< bool > spin_lock;
void w() {

while (spin_lock.exchange(true)) { /* wait */ }
x++;
spin_lock = false;

}
int main() { thread t0(w), t1(w); t0.join(); t1.join(); }

Does this program terminate? . . . yes

But there is an infinite run:
[t0: spin_lock.exchange(true) → false]
[t1: spin_lock.exchange(true) → true]ω (repeats infinitely)

but only because t0 is not allowed to run

6 / 14

What is Nontermination?

atomic< bool > spin_lock;
void w() {

while (spin_lock.exchange(true)) { /* wait */ }
x++;
spin_lock = false;

}
int main() { thread t0(w), t1(w); t0.join(); t1.join(); }

Does this program terminate? . . . yes

But there is an infinite run:
[t0: spin_lock.exchange(true) → false]
[t1: spin_lock.exchange(true) → true]ω (repeats infinitely)

but only because t0 is not allowed to run

6 / 14

What is Nontermination?

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }
x++;
spin_lock = false;

}
}
Does every wait end?

yes?

[t0: spin_lock.exchange(true) → false](
[t1: spin_lock.exchange(true) → true]
[t0: x++]
[t0: spin_lock = false]
[t0: spin_lock.exchange(true) → false]

)ω

both threads can run

7 / 14

What is Nontermination?

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }
x++;
spin_lock = false;

}
}
Does every wait end? yes

?

[t0: spin_lock.exchange(true) → false](
[t1: spin_lock.exchange(true) → true]
[t0: x++]
[t0: spin_lock = false]
[t0: spin_lock.exchange(true) → false]

)ω

both threads can run

7 / 14

What is Nontermination?

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }
x++;
spin_lock = false;

}
}
Does every wait end? yes?

[t0: spin_lock.exchange(true) → false](
[t1: spin_lock.exchange(true) → true]
[t0: x++]
[t0: spin_lock = false]
[t0: spin_lock.exchange(true) → false]

)ω

both threads can run

7 / 14

What is Nontermination?

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }
x++;
spin_lock = false;

}
}
Does every wait end? yes?

[t0: spin_lock.exchange(true) → false](
[t1: spin_lock.exchange(true) → true]
[t0: x++]
[t0: spin_lock = false]
[t0: spin_lock.exchange(true) → false]

)ω

both threads can run

7 / 14

What is Nontermination?

[t0: spin_lock.exchange(true) → false](
[t1: spin_lock.exchange(true) → true]
[t0: x++]
[t0: spin_lock = false]
[t0: spin_lock.exchange(true) → false]

)ω

this run requires a scheduler which allows t1 to run only if t0 is in
the critical section

does not happen in reality
for realistic schedulers an infinite run does not imply nontermination

8 / 14

What is Nontermination?

[t0: spin_lock.exchange(true) → false](
[t1: spin_lock.exchange(true) → true]
[t0: x++]
[t0: spin_lock = false]
[t0: spin_lock.exchange(true) → false]

)ω

this run requires a scheduler which allows t1 to run only if t0 is in
the critical section
does not happen in reality

for realistic schedulers an infinite run does not imply nontermination

8 / 14

What is Nontermination?

[t0: spin_lock.exchange(true) → false](
[t1: spin_lock.exchange(true) → true]
[t0: x++]
[t0: spin_lock = false]
[t0: spin_lock.exchange(true) → false]

)ω

this run requires a scheduler which allows t1 to run only if t0 is in
the critical section
does not happen in reality
for realistic schedulers an infinite run does not imply nontermination

8 / 14

What is Nontermination?

Nontermation
a program does not terminate if it can reach a point from which it
cannot reach its end

Resource Section
a block of code with an identifier
delimited in the source code

Local Nontermation
a resource section does not terminate if the program can reach a
point in the resource section from which it cannot reach the
corresponding resource section end

9 / 14

What is Nontermination?

Nontermation
a program does not terminate if it can reach a point from which it
cannot reach its end

Resource Section
a block of code with an identifier
delimited in the source code

Local Nontermation
a resource section does not terminate if the program can reach a
point in the resource section from which it cannot reach the
corresponding resource section end

9 / 14

What is Nontermination?

Nontermation
a program does not terminate if it can reach a point from which it
cannot reach its end

Resource Section
a block of code with an identifier
delimited in the source code

Local Nontermation
a resource section does not terminate if the program can reach a
point in the resource section from which it cannot reach the
corresponding resource section end

9 / 14

Detecting Nontermination

a program does not terminate if it can reach a point from which it
cannot reach its end

detect nontrivial terminal strongly connected components

⊥

nontriv. terminal SCC

10 / 14

Detecting Nontermination

a program does not terminate if it can reach a point from which it
cannot reach its end
detect nontrivial terminal strongly connected components

⊥

nontriv. terminal SCC

10 / 14

Going Local: Active Resource Section Instances

lock(m1)

do_work_1

lock(m2)

do_work_2

unlock(m2)

unlock(m1)

end

11 / 14

Going Local: Active Resource Section Instances

lock(m1)

do_work_1

lock(m2)

do_work_2

unlock(m2)

unlock(m1)

end

11 / 14

Going Local: Active Resource Section Instances

ARSI

ARSI

lock(m1) lock(m1)

do_work_1

lock(m2)

do_work_2

unlock(m2)

unlock(m1)

do_work_1

lock(m2)

do_work_2

unlock(m2)

unlock(m1)

end

lock(m2)

do_work_2

unlock(m2)

11 / 14

Detecting Local Nontermination

a resource section does not terminate if the program can reach a
point in the section from which it cannot reach the corresponding
resource section end

mark edges in ARSIs as accepting
detect fully accepting terminal strongly connected components
(FATSCC)

nontriv. terminal SCC

FATSCC

12 / 14

Detecting Local Nontermination

a resource section does not terminate if the program can reach a
point in the section from which it cannot reach the corresponding
resource section end
mark edges in ARSIs as accepting
detect fully accepting terminal strongly connected components
(FATSCC)

nontriv. terminal SCC

FATSCC

12 / 14

Detection Algorithm
modified Tarjan’s algorithm for SCC decomposition: O(|G |)
global nontermination has no overhead
for local nontermination the graph can get bigger

100 101 102 103 104
100

101

102

103

104

safety [s]

lo
ca
ln

on
te
rm

.
[s]

Wall Time (in seconds)

13 / 14

Detection Algorithm
modified Tarjan’s algorithm for SCC decomposition: O(|G |)
global nontermination has no overhead
for local nontermination the graph can get bigger

100 101 102 103 104
100

101

102

103

104

safety [s]

lo
ca
ln

on
te
rm

.
[s]
Wall Time (in seconds)

13 / 14

Resource Sections & Conclusions

Source of resourcre sections
either built-in (mutexes, condition variables, thread joining, . . .)
or user-provided (in source code; block of code, function end, . . .)

Conclusion
we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis
built on explicit-state model checking → finite state space required
works also on programs which do not terminate
open-source implementation
performance is underwhelming, but it can detect new class of bugs
https://divine.fi.muni.cz/2019/lnterm/

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

Resource Sections & Conclusions

Source of resourcre sections
either built-in (mutexes, condition variables, thread joining, . . .)
or user-provided (in source code; block of code, function end, . . .)

Conclusion
we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis

built on explicit-state model checking → finite state space required
works also on programs which do not terminate
open-source implementation
performance is underwhelming, but it can detect new class of bugs
https://divine.fi.muni.cz/2019/lnterm/

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

Resource Sections & Conclusions

Source of resourcre sections
either built-in (mutexes, condition variables, thread joining, . . .)
or user-provided (in source code; block of code, function end, . . .)

Conclusion
we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis
built on explicit-state model checking → finite state space required

works also on programs which do not terminate
open-source implementation
performance is underwhelming, but it can detect new class of bugs
https://divine.fi.muni.cz/2019/lnterm/

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

Resource Sections & Conclusions

Source of resourcre sections
either built-in (mutexes, condition variables, thread joining, . . .)
or user-provided (in source code; block of code, function end, . . .)

Conclusion
we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis
built on explicit-state model checking → finite state space required
works also on programs which do not terminate

open-source implementation
performance is underwhelming, but it can detect new class of bugs
https://divine.fi.muni.cz/2019/lnterm/

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

Resource Sections & Conclusions

Source of resourcre sections
either built-in (mutexes, condition variables, thread joining, . . .)
or user-provided (in source code; block of code, function end, . . .)

Conclusion
we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis
built on explicit-state model checking → finite state space required
works also on programs which do not terminate
open-source implementation

performance is underwhelming, but it can detect new class of bugs
https://divine.fi.muni.cz/2019/lnterm/

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

Resource Sections & Conclusions

Source of resourcre sections
either built-in (mutexes, condition variables, thread joining, . . .)
or user-provided (in source code; block of code, function end, . . .)

Conclusion
we have presented a novel technique which allows detecting bugs not
captured by safety (or LTL/CTL*) analysis
built on explicit-state model checking → finite state space required
works also on programs which do not terminate
open-source implementation
performance is underwhelming, but it can detect new class of bugs
https://divine.fi.muni.cz/2019/lnterm/

14 / 14

https://divine.fi.muni.cz/2019/lnterm/

