Local Nontermination Detection
for Parallel C4++ Programs

Vladimir Still  Ji¥{ Barnat

5 ParaDiSe

Parallel & Distributed

:”:' Systems Laboratory
Masaryk University

Brno, Czech Republic

20th Septempler 2019



. . .}E
Motivation A3

“Would you trust a program which was verified, but not tested?”

1/14



. . .}E
Motivation A3

“Would you trust a program which was verified, but not tested?”

DEMO: DIVINE

1/14



. . 0
Motivation B

“Would you trust a program which was verified, but not tested?”

DEMO: DIVINE

. at the very least, we should not blindly trust safety checking
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Safety Checking Parallel Programs B |

targeting assertion violations, memory corruption, data races
primarily caused by thread interleaving
or by relaxed memory

if the program might not terminate. ..

m the tool might not terminate
m or it might report there are no safety violations (correctly)

not enough for parallel programs
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m check that the whole program terminates
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| (Non)Termination Checking [ i .

m check that the whole program terminates

m or checks that certain parts of it terminate

m critical sections
m waiting for condition variables, threads. ..
m user-defined parts
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. . . o
Local Nontermination Detection for Parallel Programs B

we aim at nontermination caused by unintended parallel interactions
not at complex control flow & loops

should be easy to specify

should not report nontermination spuriously

should be useful for analysis of services/servers

m build on explicit-state model checking — finite-state programs
(with possibly infinite behaviour)
m user can specify what to check

bool x = true;
while (true) { x = !x; }

~(J )
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What is Nontermination? B

10

mutex mtx;
void w() { mutex.lock(); x++; mutex.unlock(); }
int main() { thread tO(w), t1(w); t0.join(); tl.join(); }

Does this program terminate?
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atomic< bool > spin_lock;
void w() {
while (spin_lock.exchange(true)) { /* wait */ }
X++;
spin_lock = false;

}
int main() { thread tO(w), t1(w); t0.join(); tl.join(); }

Does this program terminate? ... yes

But there is an infinite run:
[t0: spin_lock.exchange(true) - false]
[t1: spin_lock.exchange(true) - truel® (repeats infinitely)

but only because t0 is not allowed to run
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What is Nontermination? B

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }

X4+

3

spin_lock = false;

}

Does every wait end?

7/14



What is Nontermination? B

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }

X4+

3

spin_lock = false;

}

Does every wait end? yes

7/14



What is Nontermination? B

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }

X4+

3

spin_lock = false;

}

Does every wait end? yes?

7/14



What is Nontermination? B

10

void w() {
while (true) {

while (spin_lock.exchange(true)) { /* wait */ }
x++;

3

spin_lock = false;

}

Does every wait end? yes?

[t0: spin_lock.exchange(true) -+ falsel

([t1: spin_lock.exchange(true) - true]
[t0: x++]

[t0: spin_lock = false]
[t0: spin_lock.exchange(true) - false])”

both threads can run
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What is Nontermination? B

[t0: spin_lock.exchange(true) - false]
([t1: spin_lock.exchange(true) - true]
[t0: x++]

[t0: spin_lock = false]

[t0: spin_lock.exchange(true) - false])”

m this run requires a scheduler which allows t1 to run only if t0 is in
the critical section
m does not happen in reality

m for realistic schedulers an infinite run does not imply nontermination
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Nontermation

m a program does not terminate if it can reach a point from which it
cannot reach its end
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What is Nontermination? B

Nontermation

m a program does not terminate if it can reach a point from which it
cannot reach its end

Resource Section

m a block of code with an identifier
m delimited in the source code

Local Nontermation

m a resource section does not terminate if the program can reach a
point in the resource section from which it cannot reach the
corresponding resource section end
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cannot reach its end

10 / 14



Detecting Nontermination | &

m a program does not terminate if it can reach a point from which it
cannot reach its end

m detect nontrivial terminal strongly connected components
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Going Local: Active Resource Section Instances B
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Going Local: Active Resource Section Instances [
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Detecting Local Nontermination E:

m a resource section does not terminate if the program can reach a
point in the section from which it cannot reach the corresponding
resource section end
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Detecting Local Nontermination

m a resource section does not terminate if the program can reach a
point in the section from which it cannot reach the corresponding

resource section end

m mark edges in ARSIs as accepting

m detect fully accepting terminal strongly connected components

(FATSCC)

_______

nontriv. terminal SCC,

________
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Detection Algorithm B

m modified Tarjan’s algorithm for SCC decomposition: O(|G|)
m global nontermination has no overhead
m for local nontermination the graph can get bigger
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m modified Tarjan’s algorithm for SCC decomposition: O(|G|)

m global nontermination has no overhead
m for local nontermination the graph can get bigger
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Resource Sections & Conclusions B

Source of resourcre sections

m either built-in (mutexes, condition variables, thread joining, ...)

m or user-provided (in source code; block of code, function end, ...)
Conclusion

m we have presented a novel technique which allows detecting bugs not

captured by safety (or LTL/CTL*) analysis

m built on explicit-state model checking — finite state space required

m works also on programs which do not terminate

m open-source implementation

m performance is underwhelming, but it can detect new class of bugs

m https://divine.fi.muni.cz/2019/1nterm/
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