
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Reproducible Execution of POSIX Programs
with DiOS

Petr Ročkai, Zuzana Baranová, Jan Mrázek,
Kataŕına Kejstová, Jǐŕı Barnat ?

Faculty of Informatics, Masaryk University
Brno, Czech Republic

Received: date / Revised version: date

Abstract In this paper, we describe DiOS, a lightweight model operating
system, which can be used to execute programs that make use of POSIX
APIs. Such executions are fully reproducible: running the same program
with the same inputs twice will result in two exactly identical instruction
traces, even if the program uses threads for parallelism.

DiOS is implemented almost entirely in portable C and C++: although
its primary platform is DiVM, a verification-oriented virtual machine, it can
be configured to also run in KLEE, a symbolic executor. Finally, it can be
compiled into machine code to serve as a user-mode kernel.

Additionally, DiOS is modular and extensible. Its various components
can be combined to match both the capabilities of the underlying platform
and to provide services required by a particular program. Components can
be added to cover additional system calls or APIs or removed to reduce
overhead.

The experimental evaluation has three parts. DiOS is first evaluated as a
component of a program verification platform based on DiVM. In the second
part, we consider its portability and modularity by combining it with the
symbolic executor KLEE. Finally, we consider its use as a standalone user-
mode kernel.

1 Introduction

Software verification and validation is a field with a long and varied tradi-
tion and includes many methods, processes and techniques. While a certain
amount of human involvement in the effort is quite unavoidable, the trend

? This work has been partially supported by the Czech Science Foundation grant
No. 18-02177S and by Red Hat, Inc.



2 Petr Ročkai et al.

is clearly towards maximal automation. For automation, consistency and
reproducibility are clearly essential, but those properties are also of high
value in manual efforts.

In this paper, we focus on the lower-level aspects of software quality
assurance, with emphasis on:

– implementation-level pre- and post-conditions, invariants, and asser-
tions,

– correctness of memory management (memory safety),
– low-level functional requirements (expressed as e.g. unit tests),
– programming errors in the interaction of programs with the operating

system,
– medium-level functional requirements: the input-output behaviour of

complete programs of moderate complexity.

In particular, validation and high-level verification (system testing, in-
tegration testing and non-testing-based approaches at a similar level of ab-
straction) are out of scope.

We have designed and implemented a compact model operating system,
DiOS, with the aim to improve execution reproducibility in the context of
the quality assurance goals outlined above. More specifically, we target the
program-facing aspects of the POSIX standard, which are mainly defined
in terms of a C API (Application Programming Interface). For this reason,
our work is primarily applicable to C and C++ programs, which often use
those operating system APIs directly. Additionally, it is indirectly applicable
to programs written in higher-level languages, since even in those cases,
interaction with the operating system is usually conducted through the
POSIX C API.1

The model operating system that we describe in this paper is useful in
its own right, for instance as a highly reproducible execution environment
for traditional unit and functional tests. Its main strength, however, lies
in its ability to complement existing rigorous software analysis tools, such
as symbolic executors or full-blown software model checkers. In this role,
our proposed operating system can be used as a stand-in for the native
execution platform of the program under analysis. Moreover, thanks to its
simplicity and modular design, DiOS can be adapted to various verification
platforms, which will be demonstrated further in the paper.

In the rest of this section, we lay down the motivation, highlight the
contributions of the present paper and set out the design goals of our effort.
In Section 2, we discuss the prior art and related work. Section 3 describes
the interface between DiOS and the underlying execution platform in general
terms, while Section 4 describes the specific platforms to which DiOS has
been ported and the state and capabilities of those ports. In Section 5, we

1 One exception to this rule is the Go programming language, which at least
in some configurations bypasses the C interface and interacts directly with the
operating system kernel using system-specific conventions.



Reproducible Execution of POSIX Programs with DiOS 3

give a high-level view of the design and architecture of DiOS, abstracting
technical and implementation details, which are then filled in by Section 6.
We conclude the paper by presenting an empirical validation of the obtained
results in Section 7 and give a final summary in Section 8.

1.1 Motivation

Real-world software has a strong tendency to interact with its execution
environment in complex ways. To make matters worse, typical environ-
ments in which programs execute are often extremely unpredictable and
hard to control. This is an important factor that contributes to high costs
of software validation and verification. Even the most resilient verification
methods (those based on testing) see substantial adverse effect.

In automated testing, one of the major criteria for a good test case is
that it gives reliable and reproducible results, without intermittent failures.
This is especially true in the process of debugging: isolating a fault is much
harder when it cannot be consistently observed. For this reason, significant
part of the effort involved in testing is spent on controlling the influence of
the environment on the execution of test cases.

The situation is even worse with more rigorous verification methods – for
instance, soundness of verification tools based on dynamic analysis strongly
depends on the ability to fully control the execution of the system under
test.

Consider gzip, a standard UNIX utility, which consists of an algorithmic
core (the deflate compression algorithm) and a user interface, the latter of
which interacts heavily with the operating system. An important part of this
OS interaction deals with reading the input and writing the output. For the
sake of simplicity, let us formulate the following property: decompressing a
file, under conditions where memory allocation (via malloc) may fail, does
not lead to any memory errors. In addition to the usual execution, this
entails exploring all the error paths related to allocation failures. It is quite
possible that these error paths have side effects: for instance, the input file
might be closed, and the incomplete output file might be unlinked. The
expected path (decompression is successful) also has a side effect: the input
file is unlinked after decompression.

These side effects are what makes, in this case, the execution non-
reproducible: if gzip succeeds, running the same command again will fail
(the input file no longer exists), which is a behaviour clearly different from
the previous execution. Moreover, model checkers usually do not restart ex-
ecution from scratch: instead, a model checker will return (backtrack) to
the last malloc call where it did not yet explore both outcomes, and restore
the program state. In this case, an inconsistency appears between the inter-
nal state of the program, and external state of the environment. After an
error path has closed the input file, and the model checker rolls back to a
previous state, the program believes it has a valid file descriptor. The oper-
ating system (the environment), however, has already invalidated that file



4 Petr Ročkai et al.

descriptor and when the program attempts to use it, the operating system
will indicate an error.

In this paper, we set out to design and implement a small and suffi-
ciently self-contained model operating system that can provide a realistic
environment for executing POSIX-based programs. Since this environment
is fully virtualised and isolated from the host system, program execution is
always fully reproducible. As outlined above, such reproducibility is valu-
able, sometimes even essential, in testing and program analysis scenarios.
Especially dynamic techniques, like software model checking or symbolic
execution, rely on the ability to replay interactions of the program with its
environment and obtain identical outcomes every time.

1.2 Contribution

The paper describes our effort to implement a compact operating system on
top of existing verification frameworks and virtual machines (see Section 4)
and its extension to execute natively, as a small user-mode kernel. In the
initial phase, which was focused on execution in a virtual machine, we have
identified a small set of interfaces between the VM and the operating system
(see also Section 3) with two important qualities:

1. the interfaces are lightweight and easy to implement in a VM,
2. they enable an efficient implementation of complex high-level constructs.

Such minimal interfaces represent a sound design principle and lead to
improved modularity and re-usability of components. In our case, identifi-
cation of the correct interfaces drives both portability and compactness of
implementation.

Additionally, the most important parts of this interface are sufficiently
easy to implement in terms of native (host) operating system services, which
in turn made the extension to native execution possible.

Despite its minimalist design, the current implementation covers a wide
range of POSIX APIs in satisfactory detail (see also Section 5.3). The com-
plete source code is available online,2 under a permissive open-source licence.

Finally, the design that we propose improves robustness of verifica-
tion tools. A common implementation strategy treats high-level constructs
(e.g. the pthread API) as primitives built into the execution engine. This
ad-hoc approach often leads to implementation bugs which then compromise
the soundness of the entire tool. Our design, on the other hand, emphasises
clean separation of concerns and successfully reduces the amount of code
which forms the trusted execution and/or verification core.

1.3 Design Goals

We would like our system to have the following properties:

2 https://divine.fi.muni.cz/2020/dios/



Reproducible Execution of POSIX Programs with DiOS 5

1. Modularity: minimise the interdependence of the individual OS com-
ponents. It should be as easy as possible to use individual components
(for instance libc) without the others. The kernel should likewise be
modular.

2. Portability:3 reduce the coupling to the underlying platform (verification
engine), making the OS useful as a pre-made component in building
verification and testing tools.

3. Veracity: the system should precisely follow POSIX and other applicable
standardised semantics. It should be possible to port realistic programs
to run on the model operating system with minimal effort.

4. ABI compatibility: it should be possible to generate a working native
executable from bitcode that has been built for DiOS.

Since the desired properties are hard to quantify, we provide a qualitative
evaluation of the outcomes in Section 7.

2 Related Work

Programs which interact with the surrounding operating system have been
studied from different perspectives. Our main focus is on the reproducibility
of the program execution, and on the ease of use of the given method,
particularly with application programs and in conjunction with testing, as
the principal method of assurance of correctness.

2.1 Execution Reproducibility

Some of the simpler approaches either offer a substitute of the necessary
system facility, or let the program interact with the actual operating sys-
tem and attempt to capture the relevant data for later use/analysis. As
for the latter case, a number of tools capture provenance, or history of the
execution, by following and recording program’s interactions with the envi-
ronment, later using this information to reproduce the recorded execution.

For instance, ReproZip [5] bundles the environment variables, files and
library dependencies it observes so that the executable can be run on a
different system. While the tool was not intended for analysis of programs,
but rather to make their execution reproducible in different environments,

3 Ideally, since reproducibility is the main motivation for DiOS, a given program
on given inputs would lead to an identical state space across all supported plat-
forms. Considering the difficulty of the problem, this was not a major priority.
Instead, we aim for a less ambitious variant of this goal, that is, the program
exhibits the same higher-level semantics. In particular, considering any pair of
platforms, the program contains the same set of errors (as long as all errors in
the program fall into the intersection of error classes detected on both). Alas, it is
much harder to demonstrate this modified thesis rigorously, though our evaluation
does support it.



6 Petr Ročkai et al.

it goes to show how interaction of a program with the system binds it to
the surrounding environment and how the potentially different systems (in
terms of missing dependencies) might obstruct reproducibility.

Another way to capture provenance of the running program is in form
of logs, which are possibly harder to re-execute but easier to analyse. Some-
times more complex structures are used – provenance graphs in case of
ES3 [7]. ES3 (The Earth System Science Server) records read and write ac-
cesses to files along with information about the relevant process, and then
models the relationships between the affected files and the processes which
accessed them. The result is a directed graph of files and processes, created
during execution of a program. In particular, system calls can be traced to
record the interactions.

SCARPE [10] was developed for Java programs and captures I/O, user
inputs and interactions with the database and the file system into a simple
event log. The user has to state which interactions to observe by annotating
the individual classes that make up the program, since the instrumentation
introduces substantial overhead, and recording all interactions may generate
a considerable amount of data (for example, capturing a large portion of
the database).

2.2 Testing and Symbolic Execution

Another common approach to dealing with the complexity of interactions
with the execution environment is mocking [17, 18]: essentially, building
small models of the parts of the environment that are relevant in the given
test scenario. A mock object is one step above a stub, which simply accepts
and discards all requests. A major downside of using mock objects in testing
is that sufficiently modelling the environment requires a lot of effort: either
the library only provides simple objects and users have to model the system
themselves, or the mock system is sophisticated, but the user has to learn
a complex API.

Most testing frameworks for mainstream programming languages of-
fer a degree of support for building mock objects, including mock objects
which model interaction with the operating system. For instance the pytest
tool [14] for Python allows the user to comfortably mock a database connec-
tion. A more complex example of mocking would be the file system support
in Pex [13], a symbolic executor for programs targeting the .NET platform.
KLEE is a symbolic executor based on LLVM and targets C (and to some
degree C++) programs with a different approach to environment interac-
tion. Instead of modelling the file system or other operating system services,
it allows the program to directly interact with the host operating system,
optionally via a simple adaptation layer which provides a degree of isolation
based on symbolic file models.

This latter approach, where system calls and even library calls are for-
warded to the host operating system is also used in some runtime model
checkers, most notably Inspect [22] and CHESS [19].



Reproducible Execution of POSIX Programs with DiOS 7

2.3 Model Checking

Delegating the interactions to the real operating system, instead of providing
equivalent substitutions, makes both reproducibility and verification more
problematic. Those approaches only work when the program interacts with
the operating system in a way free from side effects, and when external
changes in the environment do not disturb verification (see also the example
in Section 1.1).

A specific example of an approach based on a virtual machine which
optionally passes through calls to the outside environment is the Model
Java Interface (MJI). MJI is used within Java PathFinder (JPF), a verifier
targeting Java bytecode programs, since JPF provides, in essence, its own
Java Virtual Machine. Specifically, MJI allows the program running in the
JPF-specific virtual machine to access the outer JVM.

One approach to lifting the non-interference requirement is cache-based
model checking [16], where initially, the interactions with the environment
are directly performed and recorded in a cache. If the model checker then
needs to revisit one of the previous states, the cache component takes over
and prevents inconsistencies from arising along different execution paths.
This approach is closely related to our proxy and replay modes (Section 5.1),
though in the case of cache-based model checking, both activities are com-
bined into a single run of the model checker. Since this approach is focused
on piece-wise verification of distributed systems, the environment mainly
consists of additional components of the same program. For this reason,
the cache can be realistically augmented with process checkpointing to also
allow backtracking the environment to a certain extent.

Perhaps the most similar to our approach is S2E [4], which serves as a
platform for other analysis tools, and aims at verification of properties and
behaviour of programs and other software. S2E uses a real software stack
(programs, libraries, the operating system kernel and other parts), on the
observation that the environment plays an important role in software anal-
ysis. Rather than relying on models, S2E employs virtualization for realistic
analysis of systems that interact with their environment. The analysers built
on top of S2E are, in a fashion similar to our approach, modular systems.
An important difference is that in the case of S2E, tools analyse individual
paths (executions) and group path families with a common property.

Finally, standard (offline) model checkers rarely support more than a
handful of interfaces. The most widely supported is the POSIX threading
API, which is modelled by tools such as Lazy-CSeq [9] and its variants, by
Impara [21] and by a few other tools.

2.4 High-Assurance Systems

At the other end of the complexity scale of program interactions are efforts
to model and reason at the level of processor instructions, and interactions



8 Petr Ročkai et al.

with small operating systems. One such project, focusing on verification of
programs that interact with the underlying OS via system calls, was coor-
dinated by Goel et al. [8]. The approach aims at verification of programs at
the level of machine code instructions, notably the x86 instruction-set ar-
chitecture (ISA), and thus requires that the program be first compiled into
this representation. The x86 ISA is modelled in the ACL2 programming
language, and the programs are verified against a user-supplied specifica-
tion. The verifier provides a logical mode – which serves for reasoning about
the program, and an execution mode, in which the program can be exe-
cuted directly on the host system. The system call interface is not part of
the architecture; it is instead provided by the underlying OS, making it
hard to reason about reproducible behaviour of programs. In this sense, the
project is a pilot study of user-level programs analysed in their machine-
code form, which use system calls. However, this approach has its specific
limitations: firstly, since the authors do not support SIMD instructions,
they have to provide substitutions for the functions that produce these –
such as getchar. Secondly, and more importantly, a lot of work has to be
done manually, which unfortunately requires understanding of the employed
proof techniques and the machine code instructions involved. In this paper,
we instead focus on verification of programs on a higher level of abstraction
and model the system call interface using its API-level description.

Further rigorous verification efforts concentrate on thorough formaliza-
tion of the system: ideally, a proof of correctness is provided for each sub-
part and for their interaction. One of the examples is Olos [6], which is a
very specific effort aiming at a fully verified system. The motivation here
is that since correctness of an application that interacts with the system
depends on the correctness of this system. The proposed system runs on
a verified processor, uses a special programming language (known as C0),
and a proven-correct compiler, among other things.

3 Platform Interface

In this section, we will describe our expectations of the execution or veri-
fication platform and the low-level interface between this platform and our
model operating system. We then break down the interface into a small
number of areas, each covering particular functionality. The platform re-
quirements of various DiOS features are summarised in Table 1.4

4 Non-determinism is required to implement two important classes of features:
scheduling (threads, processes) and fault injection (which is, however, always op-
tional). Additionally, a number of modules can transparently pass through in-
determinate values (e.g. in the context of symbolic model checking), but do not
directly make any use of non-determinism themselves.



Reproducible Execution of POSIX Programs with DiOS 9

Table 1. Summary of available features and what they require from the
underlying verification platform: ‘stack’ means direct manipulation of the
execution stack, ‘nondet’ means non-deterministic choice, ‘memsafe’ means
that the feature relies on enforcement of memory safety. Further, ‘sync sys-
tems’ refers to synchronous systems, or rather, in our case, the synchronous
mode of the scheduler, described in more detail in Section 5.1. Optional
items are marked with +.

feature stack nondet memsafe other

malloc X+ memory management
threads X X

sync systems X
processes X X X heap cloning

signals X
system calls supervisor mode+

file system
longjmp X

exceptions X
proxy mode syscall execution
replay mode X

3.1 Preliminaries

The underlying platform can have different characteristics. We are mainly
interested in platforms or tools based on dynamic analysis, where the pro-
gram is at least partially interpreted or executed, often in isolation from
the environment. If the platform itself isolates the system under test, many
standard facilities like file system access become unavailable. In this case,
the role of DiOS is to provide a substitute for the inaccessible host system.

If, on the other hand, the platform allows the program to access the host
system, this easily leads to inconsistencies, where executions explored first
can interfere with the state of the system observed by executions explored
later. For instance, files or directories might be left around, causing unex-
pected changes in the behaviour of the system under test.5 In cases like
those, DiOS can serve to insulate such executions from each other. Under
DiOS, the program can observe the effects of its actions along a single ex-
ecution path – for instance, if the program creates a file, it will be able to
open it later. However, this file never becomes visible to another execution
of the same program, regardless of the exploration order.

5 If execution A creates a file and leaves it around, execution B might deviate
from its expected course when it tries to create the same file, or might detect its
presence and behave differently.



10 Petr Ročkai et al.

Unfortunately, not all facilities that operating systems provide to pro-
grams can be modelled entirely in terms of standard C.6 To the contrary,
certain areas of high-level functionality that the operating system is ex-
pected to implement strongly depend on low-level aspects of the underlying
platform. Some of those are support for thread scheduling, process isolation,
control flow constructs such as setjmp and C++ exceptions, among others.
We will discuss those in more detail in the following sections.

3.2 Program Memory

An important consideration when designing an operating system is the se-
mantics of the memory subsystem of its execution platform. DiOS is no
exception: it needs to provide a high-level memory management API to the
application (both the C malloc interface and the C++ new/delete inter-
face). In principle, a single flat array of bytes is sufficient to implement all
the essential functionality: the result of malloc is likewise an array of bytes.
In a flat model, though, the memory allocator must manage additional data
structures, which are susceptible to corruption by misbehaving programs.

In normal operation, the size of an object allocated by malloc must be
known a priori, and is supplied by the caller. Resizing objects (the equivalent
of realloc), however, poses an issue: in a flat memory model, it generally
requires allocating a new block of memory and moving the data, as the
memory which belongs to a single object must be contiguous. For internal
use by DiOS (both the kernel and the libc), it is both more convenient and
more efficient if object resizing could happen in place.

Ultimately, a flat array lacks both in efficiency and in robustness. Ideally,
the platform would provide a memory management API that manages indi-
vidual memory objects which in turn support an in-place resize operation.
This makes operations more efficient by avoiding the need to make copies
when extra memory is required, and the operating system logic simpler by
avoiding a level of indirection.

If the underlying platform is memory-safe and if it provides a supervisor
mode to protect access to certain registers or to a special memory location,
the remainder of kernel isolation is implemented by DiOS itself, by with-
holding addresses of kernel objects from the user program. In this context,
memory safety entails bounds checks and an inability to overflow pointers
from one memory object into another.

6 Here, we primarily refer to the C language, as opposed to the standard C
library. In most use-cases, the C library is, in fact, provided by DiOS and for this
reason, DiOS itself cannot rely on library facilities like setjmp. An exception to
this rule is the ‘native’ port of DiOS, which uses a small set of functions from the
host C library (see also Section 4.3).



Reproducible Execution of POSIX Programs with DiOS 11

3.3 Execution Stack

Information about active procedure calls and about the local data of each
procedure are, on most platforms, stored in a special execution stack. While
the presence of such a stack is almost universal, the actual representation
of this stack is very platform-specific. On most platforms that we consider,
it is part of standard program memory and can be directly accessed using
standard memory operations.7 If both reading and modification of the stack
(or stacks) is possible, the operations that DiOS needs to perform can be
implemented without special assistance from the platform itself:

– creation of a new execution stack, which is needed in two scenarios:
isolation of the kernel stack from the user-space stack and creation of
new tasks (threads, co-routines or other similar high-level constructs),

– stack unwinding, where stack frames are traversed and removed from
the stack during exception propagation or due to setjmp/longjmp.

Additionally, DiOS needs to be able to transfer control to a particular
stack frame, whether to a different frame within a single execution stack (to
implement non-local control flow) or to a different stack entirely (to imple-
ment task switching). Neither of these two variants can be implemented in
standard, portable C, even if the stack is directly accessible (though they
can be both implemented in terms of a single non-local jump primitive).
More details about the implementation of stack management on the two
platforms which support stack switching are given in Section 6.3.

In a sense, this part of the platform support is the most complex and
the hardest to implement. Fortunately, the features that rely on the above
operations, or rather the modules which implement those features, are all
optional in DiOS. This means that a successful DiOS port is possible even
if a suitable stack manipulation interface is not available.

3.4 Auxiliary Interfaces

There are three other points of contact between DiOS and the underlying
platform. They are all optional or can be emulated using standard C fea-
tures, but if available, DiOS can use them to offer additional facilities mainly
aimed at software verification and testing with fault injection.

Indeterminate values. A few components in DiOS use, or can be configured
to use, values which are not a priori determined. The values are usually
subject to constraints, but within those constraints, each possible value
will correspond to a particular interaction outcome. This facility is used
for simulating interactions that depend on random chance (e.g. incidence of

7 The main exception is KLEE, where the execution stack is completely inac-
cessible to the program under test and only the virtual machine can access the
information stored in it. See also Section 4.2.



12 Petr Ročkai et al.

clock ticks relative to the instruction stream), or where the user would prefer
to not provide specific input values and instead rely on the verification or
testing platform to explore the possibilities for them (e.g. the content of a
particular file).

Non-deterministic choice. A special case of the above, where the selection
is among a small number of discrete options. In those cases, a specific in-
terface can give better user experience or better tool performance. If the
choice operator is not available but indeterminate values are, they can be
used instead. Otherwise, the sequence of choices can be provided as an in-
put by the user, or they can be selected randomly. The choice operation is
used for scheduling choices and for fault injection (e.g. simulation of malloc
failures).

Host system call execution. Most POSIX operating systems provide an
indirect system call facility, usually as the C function syscall(). If the
platform makes this function accessible from within the system under test,
DiOS can use it to allow real interactions between the user program and
the host operating system to take place and to record and then replay such
interactions in a reproducible manner.

4 Supported Platforms

In the previous section, we have described the target platform in generic,
abstract terms. In this section, we describe three specific platforms which
can execute DiOS and how they fit with the above abstract requirements.

4.1 DiVM

DiVM [20] is a verification-oriented virtual machine based on LLVM. A
suite of tools based on DiVM implement a number of software verification
techniques, including explicit-state, symbolic and abstraction-based model
checking. DiVM is the best supported of all the platforms, since it has been
specifically designed to delegate responsibility for features to a model op-
erating system. All features available in DiOS are fully supported on this
platform.

In DiVM, the functionality that is not accessible through standard C
(or LLVM) constructs is provided via a set of hypercalls. They serve as
an extension to the LLVM language, providing an interface between the
operating system and the virtual machine. Hypercalls are used in a number
of contexts: most importantly, they are used in memory management, but
also for non-deterministic choice, for annotating the state space graph, and
for accessing machine control registers. These hypercalls form the core of the
platform interface in DiOS and whenever possible, ports to other platforms
are encouraged to emulate the DiVM hypercall interface using the available
platform-native facilities.



Reproducible Execution of POSIX Programs with DiOS 13

4.2 KLEE

KLEE [3] is a symbolic executor based on LLVM, suitable both for automated
test generation and for exhaustive exploration of bounded executions. Unlike
DiVM, KLEE by default allows the program under test to perform external
calls (including calls to the host operating system), with no isolation be-
tween different execution branches. Additionally, such calls must be given
concrete arguments, since they are executed as native machine code (i.e. not
symbolically). However, if the program is linked to DiOS, both these limi-
tations are lifted: DiOS code can be executed symbolically like the rest of
the program, and different execution branches are isolated from each other.

However, there is also a number of limitations when KLEE is considered
as a platform for DiOS. The two most important are as follows:

1. KLEE does not currently support in-place resizing of memory objects.
This is a design limitation and lifting it requires considerable changes.
A workaround exists, but it is somewhat inefficient.

2. There is only one execution stack in KLEE, and there is no support for
non-local control flow. This prevents DiOS from offering threads, C++
exceptions and setjmp when executing in KLEE.

Additionally, there is no supervisor mode and hence no isolation between
the kernel and the user program. However, in most cases, this is not a
substantial problem. Non-deterministic choice is available via indeterminate
symbolic values, and even though KLEE can in principle provide access
to host syscalls, we have not evaluated this functionality in conjunction
with DiOS. Finally, there are a few minor issues that are, however, easily
corrected:8

1. KLEE does not support the va arg LLVM instruction and relies on em-
ulating platform-specific mechanisms instead, which are absent from
DiOS;

2. it handles certain C functions specially, including the malloc family,
the C++ new operator, the errno location, and functions related to
assertions and program termination; this interferes with the equivalent
functionality provided by DiOS libc; and finally,

3. global constructors present in the program are unconditionally executed
before the entry function; since DiOS invokes constructors itself, this
KLEE behaviour also causes a conflict.

4.3 Native Execution

The third platform that we consider is native execution, i.e. the DiOS ker-
nel is compiled into machine code, like a standard user-space program, to

8 A version of KLEE with fixes for those problems is available online, along with
other supplementary material, from https://divine.fi.muni.cz/2020/dios/.



14 Petr Ročkai et al.

execute as a process of the host operating system. This setup is useful in
testing or in stateless model checking, where it can provide superior execu-
tion speed at the expense of reduced runtime safety. The user program still
uses DiOS libc, and the program runs in isolation from the host system.
The platform-specific code in DiOS uses a few hooks provided by a shim
which calls through into the host operating system for certain services, like
the creation and switching of stacks. The design is illustrated in Figure 1.

program under test

DiOS libc + kernel bitcode isolated executable

platform-specific code host shim host libc

Fig. 1. Architecture of the native execution platform.

Like in KLEE, the native port of DiOS does not have access to in-place
resizing of memory objects, but it can be emulated slightly more efficiently
using the mmap host system call. The native port, however, does not suf-
fer from the single-stack limitations that KLEE does: new stacks can be
created using mmap calls, while stack switching can be implemented using
host setjmp and longjmp functions (more details are given in Section 6.3).
The host stack unwinding code is directly used (the DiVM platform code
implements the same libunwind API that most POSIX systems also use).

On the other hand, non-deterministic choice is not directly available. It
can be simulated by using the fork host system call to split execution, but
this does not scale to frequent choices, such as those arising from scheduling
decisions. In this case, picking randomly or using an externally supplied list
of outcomes are the only options.

5 Design and Architecture

This section outlines the structure of the DiOS kernel and user space, their
components and the interfaces between them. We also discuss how the kernel
interacts with the underlying platform and the user-space libraries stacked
above it. A high-level overview of the system is shown in Figure 2. The kernel
and the user-mode parts of the system under test can be combined using
different methods; even though they can be linked into a single executable
image, this is not a requirement, and the kernel can operate in a separate
address space.

Like with traditional operating systems, kernel memory is inaccessible to
the program and libraries executing in user mode. In DiOS, this protection
is optional, since not all platforms provide supervisor mode or sufficient
memory safety. If both are available, however, kernel memory protection is
available even if the kernel and the user code share a single address space.



Reproducible Execution of POSIX Programs with DiOS 15

fault handler

file system

scheduler

other components

C99 IO

POSIX IO, syscalls

pthread

platform-specific code

non-IO C99 lib

malloc libc++

libc++abi

execution platform

kernel libc C++ support

Fig. 2. The architecture of DiOS.

5.1 Kernel Components

The decomposition of the kernel to a number of components serves multiple
goals: first is resource conservation – some components have non-negligible
memory overhead even when they are not actively used. This may be be-
cause they need to store auxiliary data along with each thread or process,
and the underlying verification tool then needs to track this data throughout
the execution or throughout the entire state space. The second is improved
portability to platforms which do not provide sufficient support for some
of the components, for instance thread scheduling. Finally, it allows DiOS
to be reconfigured to serve in new contexts by adding a new module and
combining it with existing code.

The components of the kernel are organised as a stack, where upper
components can use services of the components below them. While this
might appear to be a significant limitation, in practice this has not posed
substantial challenges, and the stack-organised design is both efficient and
simple. A number of pre-made components are available, some in multiple
alternative implementations:

Task scheduling and process management. There are four scheduler imple-
mentations: the simplest is a null scheduler, which only allows a single task
and does not support any form of task switching. This scheduler is used
on KLEE. Second is a synchronous scheduler suitable for executing software
models of hardware devices. The remaining two schedulers both implement
asynchronous, thread-based parallelism. One is designed for verification of
safety properties of parallel programs, while the other includes a fairness
provision and is therefore more suitable for verification of liveness proper-
ties.

In addition to the scheduler, there is an optional process management
component. It is currently only available on the DiVM platform, since it
heavily relies on operations which are not available elsewhere (cf. Sec-
tion 6.4). It implements the fork system call and requires one of the two
asynchronous schedulers.

POSIX System Calls. While a few system calls (mainly related to process
management) are implemented in the components already mentioned, the



16 Petr Ročkai et al.

vast majority is not. By far the largest coherent group of system calls deals
with files, directories, pipes and sockets, with file descriptors as the unifying
concept. A memory-backed file system module, described in Section 6.5,
implements those system calls by default.

A smaller group of system calls relate to time and clocks, and those are
implemented in a separate component which simulates a system clock. The
specific simulation mode is configurable and can use either indeterminate
values to shift the clock by every time it is observed, or a simpler variant,
where ticks of fixed length are performed based on the outcome of a non-
deterministic choice.

The system calls covered by the file system and clock modules can be
alternately provided by a proxy module, which forwards the calls to the host
operating system, or by a replay module which replays traces captured by
the proxy module.

Auxiliary modules. There is a small number of additional modules which
do not directly expose functionality to the user program. Instead, they fill
in support roles within the system. The two notable examples are the fault
handler and the system call stub component.

The fault handler takes care of responding to error conditions indicated
by the underlying platform. It is optional, since not all platforms can report
problems to the system under test. If present, the component allows the
user to configure which problems should be reported as counterexamples
and which should be ignored. The rest of DiOS also uses this component to
report problems detected by the operating system itself, e.g. libc uses it to
flag assertion failures. A more detailed account of the DiVM fault mechanism
and how it is used in DiOS is given in Section 6.6.

The stub component supplies fallback implementations of all system
calls known to DiOS. This component is always at the bottom of the kernel
configuration stack – if any other component in the active configuration im-
plements a particular system call, that implementation is used. Otherwise,
the fallback is called and raises a runtime error, indicating that the system
call is not supported.

5.2 Thread Support

One of the innovative features of DiOS is that it implements the POSIX
threading API using a very simple platform interface. Essentially, the asyn-
chronous schedulers in DiOS provide an illusion of thread-based parallelism
to the program under test, but only use primitives associated with corou-
tines – creation and switching of execution stacks (cf. Section 3.3).

However, an additional external component is required: both user and
library code needs to be instrumented with interrupt points, which allow
thread preemption to take place. Where to insert them can be either decided
statically (which is sufficient for small programs) or dynamically, allowing



Reproducible Execution of POSIX Programs with DiOS 17

the state space to be reduced using more sophisticated techniques.9 The
implementation of the interrupt point is, however, supplied by DiOS: only
the insertion of the function call is done externally.

The scheduler itself provides a very minimal internal interface – the re-
mainder of thread support is implemented in user-space libraries (partly
libc and partly libpthread, as is common on standard POSIX operat-
ing systems). Even though the implementation is not complete (some of
the rarely-used functions10 are stubbed out), all major areas are well sup-
ported: thread creation and cancellation, mutual exclusion, condition vari-
ables, barriers, reader-writer locks, interaction with fork, and thread-local
storage are all covered. Additionally, both C11 and C++11 thread APIs are
implemented in terms of the pthread interface.

5.3 System Calls

The system call interface of DiOS is based on the ideas used in fast system
call implementations on modern processors.11 A major advantage of this
approach is that system calls can be performed using standard procedure
calls on platforms which do not implement supervisor mode.

The list of system calls available in DiOS is fixed:12 in addition to the
kernel-side implementation, which may or may not be available depending
on the active configuration, each system call has an associated user-space C
function, which is declared in one of the public header files and implemented
in libc.

The available system calls cover thread management, sufficient to im-
plement the pthread interface (the system calls themselves are not stan-
dardised by POSIX), the fork system call, kill and other signal-related
calls, various process and process group management calls (getpid, getsid,
setsid, wait, and so on). Notably, exec is currently not implemented, and
it is not clear whether adding it is feasible on any of the platforms. The

9 In DIVINE [1], a model checker based on DiVM, interrupt points are dynami-
cally enabled when the executing thread performs a visible action. Thread identi-
fication is supplied by the scheduler in DiOS using a platform-specific (hypercall)
interface.
10 The basis of this claim is largely empirical, based on years of experience
in writing, reading and verifying multi-threaded code. The stubbed-out func-
tions are designed for highly specialized scenarios – all the function intended
for general use are implemented. An example of a lesser-used function would be
pthread barrierattr getpshared, used to obtain the value of the process-shared
attribute of its argument.
11 For instance, on contemporary x86-64 processors, this interface is available
via the syscall and sysret instructions.
12 The list of system calls is only fixed relative to the host operating system.
To allow the system call proxy component to function properly, the list needs to
match what is available on the host. For instance, creat, uname or fdatasync are
system calls on Linux but standard libc functions on OpenBSD.



18 Petr Ročkai et al.

thread- and process- related functionality was described in more detail in
Section 5.2 and in Section 5.1.

Another large group of system calls cover files and networking, including
the standard suite of POSIX calls for opening and closing files, reading and
writing data, creating soft and hard links. This includes the *at family
introduced in POSIX.1 which allows thread-safe use of relative paths. The
standard BSD socket API is also implemented, allowing threads or processes
of the program under test to use sockets for communication. Finally, there
are system calls for reading (clock gettime, gettimeofday) and setting
clocks (clock settime, settimeofday).

5.4 The C Library

DiOS comes with a complete ISO C99 standard library and the C11 thread
API. The functionality of the C library can be broken down into the follow-
ing categories:

– Input and output. The functionality required by ISO C is implemented
in terms of the POSIX file system API. Number conversion (for formatted
input and output) is platform independent and comes from pdclib.

– The string manipulation and character classification routines are com-
pletely system-independent. The implementations were also taken from
pdclib.

– Memory allocation: new memory needs to be obtained in a platform-
dependent way. Optionally, memory allocation failures can be simulated
using a non-deterministic choice operator. The library provides the stan-
dard assortment of functions: malloc, calloc, realloc and free.

– Support for errno: this variable holds the code of the most recent er-
ror encountered in an API call. On platforms with threads (like DiOS),
errno is thread-local.

– Multibyte strings: conversion of Unicode character sequences to and from
UTF-8 is supported.

– Time-related functions: time and date formatting (asctime) is sup-
ported, as is obtaining and manipulating wall time. Interval timers are
currently not simulated, although the relevant functions are present as
simple stubs.

– Non-local jumps. The setjmp and longjmp functions are supported on
DiVM and native execution, but not in KLEE.

In addition to ISO C99, there are a few extensions (not directly related
to the system call interface) mandated by POSIX for the C library:

– Regular expressions. The DiOS libc supports the standard regcomp &
regexec APIs, with implementation based on the TRE library.

– Locale support: A very minimal support for POSIX internationalisation
and localisation APIs is present. The support is sufficient to run pro-
grams which initialise the subsystem.



Reproducible Execution of POSIX Programs with DiOS 19

– Parsing command line options: the getopt and getopt long functions
exist to make it easy for programs to parse standard UNIX-style com-
mand switches. DiOS contains an implementation derived from the
OpenBSD code base.

Finally, C99 mandates a long list of functions for floating point math,
including trigonometry, hyperbolic functions and so on. A complete set of
those functions is provided by DiOS via its libm implementation, based on
the OpenBSD version of this library.

5.5 C++ Support Libraries

DiOS includes support for C++ programs, up to and including the C++17
standard. This support is based on the libc++abi and libc++ open-source
libraries maintained by the LLVM project. The versions bundled with DiOS
contain only very minor modifications relative to upstream.13

Notably, the exception support code in libc++abi is unmodified and
works both in DiVM and when DiOS is executing natively as a process of
the host operating system. This is because libc++abi uses the libunwind

library to implement exceptions. When DiOS runs natively, the host version
of libunwind is used, the same as with setjmp. When executing in DiVM,
DiOS supplies its own implementation of the libunwind API, as described
in [23].

5.6 Binary Compatibility

Programs are usually programmed against a particular API, or Application
Programming Interface, which is a high-level description (in our case in
terms of C function calls and C data types) of the interface they use to
communicate with some underlying services (in our case, with the operating
system). When a C compiler generates the intermediate code (and later
machine code), it needs to emit instructions which realize those API calls,
and which extract information from API-relevant data types. The specific
instruction sequences, however, depend on a number of factors which are
not part of the API itself, but are instead considered implementation details
at this level of abstraction. Those factors are collectively known as the ABI,
or Application Binary Interface.

When dealing with verification of real-world software, the specific ABI
of the target platform becomes important, mainly because we would like
to generate native code from verified bitcode files (when using either KLEE
or DiVM). This means that at the bitcode level, the instruction sequence

13 Of the 16 thousand lines of code in libc++, the version in DiOS differs from
upstream in 29 lines (19 lines added, 10 removed). In case of libc++abi, 7 pre-
processor directives have been added to make the library build in C++17 mode.



20 Petr Ročkai et al.

emitted by the compiler to call a function from the DiOS libc and the
sequence to call that same function from the libc of the host operating
system must be identical.

To this end, the layouts of relevant data structures and values of relevant
constants are automatically extracted from the host operating system and
then used in the DiOS libc. As a result, the native code generated from
the verified bitcode can be linked to host libraries and executed as usual.
The effectiveness of this approach is evaluated in Section 7.4.

The extraction of the host ABI is performed at DiOS build time, using
a tool (hostabi.pl) which is part of the DiOS source distribution. The
technical details are discussed in Section 6.7.

6 Implementation

In this section, we discuss some of the implementation considerations, the
challenges that we have encountered and the solutions that we chose. We will
start by describing the boot sequence of DiOS in Section 6.1: how different
platforms set up the environment and pass parameters and other data into
DiOS. In Section 6.2, we will look at the details of the coroutine-based
thread support, while Section 6.3 elaborates on the low-level aspects of
stack management on the two platforms where it is supported. Afterwards,
Section 6.4 deals with multi-process programs and the fork system call.
In Section 6.5, we discuss the file system: both the implementation of the
virtual file system itself and the protocol for seeding this virtual file system
with the data from the host system. Finally, Section 6.6 is dedicated to the
fault reporting mechanism employed by DiVM.

Table 2. Breakdown of the DiOS source code. The items marked with ‘→’
further break down the total of the component given above them. The items
marked + are original source code written for DiOS, the remainder comes
from third parties with at most minor adaptations. Components typeset in
monospace correspond to directory names in the DiOS source tree.

component loc component loc component loc

kernel+ 5532 libc 23770 libc headers 11928
→ sys 2305 → pthread+ 1024 → sys+ 2092
→ vfs 2282 → sys+ 663 → pdclib 4084
→ proxy 945 → regex 6755 → standard 5752

→ stdio 4013 libm 18591
→ time 2252 libc++ 16051
→ string 1327 libc++abi 8755
→ stdlib 1149



Reproducible Execution of POSIX Programs with DiOS 21

The implementation is a mix of C and C++. The kernel, some of the
DiOS-specific libc components and the C++ support libraries are imple-
mented in C++17, while the remainder is implemented in C99. The entire
code base is around 85000 lines of code, but a large majority of this comes
from unmodified third-party libraries. DiOS-specific code is less than 10000
lines, or about 11 % of the total.

6.1 Boot Protocol

Like any other operating system, DiOS has a boot sequence: a list of steps,
specific to a given platform, that puts the system into a state from which
the DiOS kernel can take over. Once the kernel is ready, it sets up a single
user-space process for the program under test and transfers control to that
process – there is no extended user-space initialization sequence and no
dedicated init program. In other words, DiOS executes a single user-space
program which can perhaps use the fork system call to create new processes,
but in the most common use-case, only a single process exists, and once this
process exits (or is killed), the operating system shuts down again.

The boot process is split into two parts: the first part takes place outside
of DiOS proper and involves loading the bitcode or machine code of both
DiOS itself and of the program under test, preparation of configuration
parameters and any additional data (e.g. a file system snapshot, see also
Section 6.5) in such a way that the DiOS kernel can read and process them
later. In order:

1. A DiOS kernel configuration is selected and loaded: in Section 5.1, we
have outlined that a particular DiOS kernel can be pieced together from
a selection of pre-made components. When DiOS is built, those compo-
nents are compiled and linked to form a number of kernel bitcode files,
one for each kernel configuration.

2. The user program is either loaded separately, or linked with the selected
kernel bitcode file to form a single executable image. In either case, at
this point, an execution environment is created and an address space is
set up for the combined system.

3. Static inputs are prepared and copied into the address space of DiOS.
The form of this data is an array of key-value pairs, where the key is a
null-terminated ASCII string and the value is an arbitrary byte array.

4. Execution is transferred to the boot function, which is part of DiOS
proper. This function sets up the rest of the system – it takes care of
processing the input data, initializing any internal kernel data structures
and starting the program to be tested.

The data that is passed to DiOS contains the following items:

– command line arguments to be passed down to the program under test
(not interpreted by DiOS in any way),



22 Petr Ročkai et al.

– the initial values of environment variables (likewise passed verbatim to
the program),

– configuration parameters of DiOS itself (fault injection, how to react to
faults signalled by the underlying platform, clock configuration, and so
on)

– what to do with data that appears on stdout and stderr of the pro-
gram,

– the content to be presented to the program on the stdin handle, and
finally,

– the initial content of the file system (including metadata).

Since the entirety of the data is encoded in a simple, flat key-value map,
it is easy to store this data, verbatim, in common data interchange formats
like JSON or YAML. This greatly simplifies the task of reproducing a given
execution – only the bitcode images and this block of data influence the
behaviour of the system.14

While DiVM implements the above protocol natively, all other ports pro-
vide a small amount of glue code which transforms inputs from a platform-
specific form into the form expected by DiOS. In those cases, it is also
the responsibility of the platform glue code to invoke the stardard boot

function, as described above.

6.2 Thread Support

In Section 5.2, we have mentioned that the DiOS support for threading is
based on coroutines. In this section, we will make that notion more pre-
cise. A coroutine is a computation that can be voluntarily suspended at an
arbitrary point in its execution, and later resumed to continue execution
from that point onwards. The suspension is also known as a yield. At the
point of suspension, sufficient state must be stored in memory to allow the
computation to continue even if the state of the processor will change in the
meantime.

Commonly, two types of coroutines are considered. Those of the first
type are known as stackless coroutines and usually encapsulate the entire
state of the computation in a fixed-size structure. Such coroutines can call
into standard subroutines, but cannot yield while a subroutine is executing.

In DiOS, we need to consider stackful coroutines, that is, each of the
coroutines has a private execution stack associated with it. This is required
because DiOS needs to be able to reschedule threads at arbitrary points
in execution, including within arbitrarily nested stack frames (subroutine
calls). DiOS, however, does not require a specific stack organisation (more

14 Unless DiOS is configured for system call proxying, in which case it has no
control over the outcomes of interactions with the host operating system. However,
in this case, those interactions are recorded, and the recorded execution can then
be replayed at will.



Reproducible Execution of POSIX Programs with DiOS 23

on this in Section 6.3) – it only needs to be able to perform a small number
of operations on the coroutine stacks:

1. create a new stack and place a single stack frame corresponding to a
function selected at runtime on this stack,

2. switch execution from one stack to another, in such a way that the
suspended stack can be later resumed using the same primitive,

3. destroy an inactive stack and free up its associated resources.

The newly created stack must be in a state which makes it possible to
start executing on it using the stack switching primitive from point 2. Those
three operations are implemented in a platform-specific way, but then allow
the remainder of thread support to be mostly platform-neutral.

Of course, the above scheme does not support preemptive scheduling,15

which is, however, the norm for POSIX systems. To convert a cooperative
system into a preemptive one without programmer intervention, we need
to instrument the program under test to yield into the operating system at
every ‘interesting’ (observable) point of its execution. This is achieved by
using an external tool called LART,16 which can, among other things, insert
the requisite yield instructions into LLVM bitcode automatically. By default,
only memory access instructions which access memory that cannot be stat-
ically shown to be thread-local are instrumented to yield into DiOS. This is
sufficient to observe all possible behaviours of a multi-threaded program.

Once execution returns into the kernel (due to a yield), it will use non-
deterministic choice (see also Section 3.4) to select which thread should
continue execution, and use the stack switching primitive described above
to resume this thread from the point at which it was suspended earlier.

6.3 Stack Management

In this section, we will describe how coroutine stacks are implemented on the
two platforms which support task switching: DiVM and native execution.

DiVM On DiVM, the stack is represented as a linked list of frames, where
each frame contains a snapshot of the state of the virtual processor. Each
frame has a header, which contains a pointer to the caller’s frame and the
value of the program counter (pointing at the active instruction in the func-
tion to which the stack frame is associated). The remainder of the stack

15 In a preemptive system, the executing thread does not need to perform any
special action to be interrupted and removed from the processor (i.e. preempted).
Systems based on this approach are more robust against misbehaving threads, at
the expense of reduced efficiency and less intuitive behaviour.
16 LART is a comprehensive tool for transforming and instrumenting LLVM bit-
code and is described in more detail in [20]. Appropriate calls to LART are per-
formed automatically by compilation scripts included with DiOS.



24 Petr Ročkai et al.

frame stores function arguments and a function-specific set of virtual regis-
ters.

New stack frames (and stacks) can be created simply by allocating mem-
ory for them: they are not distinguished from other memory objects stored
by DiVM, and their only special property is that either the ‘currently execut-
ing frame’ register, or another stack frame, points at them. Before bitcode
is loaded into DiVM, it is enriched with metadata that allow sufficient level
of reflection for DiOS to be able to directly construct frames for arbitrary
functions and pass arguments to them.

The final ingredient is stack frame switching: in DiVM, the register which
holds the currently executing frame can be directly overwritten from C code.
When this happens, the virtual machine arranges for execution to continue
in the target frame. Using this as a primitive, DiOS can implement both
the coroutine yield/resume operations required for thread support, and a
stack unwinder (which examines the stack frames in more detail, to decide
whether they are the target frame, and to clean up any additional memory
associated with those frames). The stack unwinder is then used in both
setjmp / longjmp and to implement C++ exceptions on this platform.

Native When executing as a native program of the host operating system,
DiOS has to conform to the stack conventions of the host. In practice, this
means a contiguous stack, on which a stack frame structure is implied (one
that is different for each processor architecture and host operating system).
While it would be possible to implement stack management using CPU-
and OS-specific assembly, this would make DiOS much harder to use in this
regime.

thread 1 setjmp compute setjmp

longjmp

scheduler setjmp longjmp

longjmp

thread 2 setjmp compute setjmp

Fig. 3. The control flow across two coroutine-based threads that use the setjmp

– longjmp mechanism to implement yields. The control starts at the scheduler,
which calls the setjmp – longjmp sequence in a loop. The scheduler longjmp

transfers control to each of the setjmp calls in each of the threads in a sequence
chosen by the scheduler. The setjmp function returns twice: once immediately
(solid line), second time (dashed) when control flow passes to it along a dashed
line from longjmp. The destination of the longjmp in the middle depends on the
decision of the scheduler and the state of individual threads at the time of the
call.



Reproducible Execution of POSIX Programs with DiOS 25

Fortunately, with access to the underlying (host) C library, it is possible
to use a combination of (standard) setjmp and longjmp functions together
with the non-standard, but common, alloca primitive to implement a rel-
atively portable system of stackful coroutines. Switching between existing
coroutines is comparatively easy using a setjmp followed by a longjmp con-
ditional on the setjmp result. The control flow of this construct is illustrated
in Figure 3.

However, setting up a new stack is slightly more complicated, and we
need to make a few assumptions about the host platform:

– alloca (or rather builtin alloca) does not check its argument, but
instead simply performs arithmetic on the stack pointer,

– the platform calling convention can pass 3 pointer arguments in registers
(can be narrowed down to one pointer at the cost of a minor increase in
overhead, though modern architectures usually offer a sufficient number
of register arguments),

– the stack grows towards lower addresses (this can be easily amended),
– it is possible to obtain memory that can be used as a stack using the

host mmap system call.

To set up a new coroutine with a new stack, the following steps are
performed in a create stack function:

1. prepare a jmp buf to store the context of the newly created coroutine,
2. use mmap to obtain memory for the new stack, and compute a pointer to

its bottom end,
3. use alloca with the distance from the current stack frame (obtained

using an address of a local variable) to the bottom of the new frame
as an argument, with the result of adjusting the stack pointer to the
bottom of the new stack,

4. perform a call on a trampoline function, which immediately calls setjmp
to store the new context in the jmp buf preallocated in step 1 and then
returns,

5. the epilogue of create stack undoes the adjustment of the stack pointer
performed by the alloca builtin.

At this point, doing a longjmp into the context of the new coroutine
causes the setjmp in the trampoline to return again (with a stack pointer
pointing to the new stack), but this time, instead of returning to its caller,
the trampoline simply calls the coroutine implementation itself.

6.4 Process Support

Support for processes in DiOS builds on thread support, since the threads of
any given process run concurrently with threads in all other processes: from
the point of view of thread scheduling, processes do not change the picture



26 Petr Ročkai et al.

significantly.17 DiOS currently does not support the exec system call (it
does not have an underlying mechanism to start executing a new program),
but it does support fork when it runs on DiVM. In POSIX systems, fork
causes the currently executing process to be duplicated into a new address
space, and both processes continue execution by returning from the fork

system call (the call returns different values in different processes, allowing
them to differentiate themselves).

Real operating systems use a trick known as ‘copy on write’ to make the
required address space duplication efficient. Additionally, the same mech-
anism (virtual memory, provided by the memory management unit of the
CPU) is used to enforce process boundaries. However, DiOS does not have
a virtual memory subsystem and instead relies on memory safety of the un-
derlying platform to implement multiple address spaces (this is one of the
reasons why process support is only available on DiVM). In this arrange-
ment, all processes share the same address space, but they cannot access
each other’s memory. A major downside of this approach is that after a
fork, one of the processes will see all memory objects shift to different lo-
cations and code which relies on specific numeric values of pointers could
break.18 Improvements in this area are a subject of future research.

6.5 Virtual File System

Support for file system operations is quite fundamental to any POSIX-
compatible system. The POSIX semantics of files and directories are well
established and well understood. Since the file system is a shared resource,
the issue of concurrent access arises. Fortunately, the operations on direc-
tories (such as linking, unlinking and renaming of files) are straightforward,
since they are guaranteed to be atomic. The situation regarding file content
is slightly more complicated: POSIX does not specify the exact behaviour of
concurrent write operations, and DiOS currently uses a very simple model,
where the effect of each system call is atomic.19 Finally, in the real world,
operations on files are subject to a number of externally-caused error condi-
tions (e.g. due to faulty hardware). In software, those effects can be emulated
using fault injection, though this functionality is currently not offered by
DiOS.

Our implementation of the file system builds on the traditional approach,
where all file-like objects (including directories) are backed by inodes, which

17 There are typically more opportunities for state space reductions in inter-
process concurrency (when compared to thread-based concurrency) due to less
shared state, but this is currently outside the scope of DiOS.
18 Specifically, hash tables and binary search trees that use pointers as keys are
vulnerable to this problem.
19 Of course, the effects of multiple concurrent calls to write may be ordered
arbitrarily, and the scheduler will in fact ensure that all possible orderings of
writes are explored.



Reproducible Execution of POSIX Programs with DiOS 27

are, in our case, represented using in-memory data structures. For reasons
of implementation simplicity, inodes in DiOS form a simple object-oriented
class hierarchy with late binding. The basic set of operations over an inode
is (not all inode types support all of them):

– determine the access mode, size, ownership, inode number and other
metadata, and adjust those where applicable,

– read and write data from the inode,
– open and close the inode (for keeping track of the number of live refer-

ences),
– link and unlink the inode into the directory tree (likewise for keeping

track of reference counts),
– perform socket operations (listen, connect, bind, accept, receive

and so on).

Of notable interest is the reference counting mechanism, which is essen-
tially mandated by POSIX semantics: an inode must remain valid as long as
there are either directory links which refer to it, or while it is present in the
open file table of a running process. Inodes which are no longer referenced
can be recycled and their associated storage likewise released for reuse.

The inode types available in DiOS are the following:

– the standard input of the executing program,
– output inodes which copy any data they receive into the execution trace

which usually becomes part of the verification report (cf. Section 6.6),
in a line-buffered and an unbuffered variant, usually connected to the
stdout and stderr of the program under test,

– a regular file inode, which simply stores an array of bytes,
– a symbolic (soft) link,
– directory inodes, which contain named links to other inodes (those links

are made available to the user space using the standard read function),
– pipes, which push data in a single direction, and finally
– sockets, which are used for both inter-process and network communica-

tion (both stream and datagram sockets are supported).

DiOS notably lacks support for special files called (character and block)
devices, which in normal UNIX represent peripherals and other special file
types, for instance /dev/null.20

While inodes enshrine the content and semantics of individual file system
objects, the interaction of programs with the file system is mediated by per-
process file descriptors, which refer to entries in a global open file table. File
descriptors are thin references – in user space, they appear as small integers,
while in the kernel, they are used as indices into a table of references to open
files. While a single inode may have multiple entries in the open files table,

20 The existence and semantics of /dev/null, along with /dev/zero, are man-
dated by POSIX, but currently not available on DiOS. This is expected to be fixed
in a future revision.



28 Petr Ročkai et al.

it is also possible that multiple file descriptors point to the same record
in this table. The offset (the position within the file where the next read

or write operation will take place) and certain flags are a property of the
open file record and may be therefore shared by multiple file descriptors,
even across process boundaries.

The remaining component of the file system API are paths, which de-
scribe the locations of files (and other objects) in the directory tree. Paths
appear most prominently in the open call, which takes a path as input and
returns a file descriptor as its output, thus allowing the process to interact
with the designated file further. Two types of paths exist: absolute, which
are anchored to a per-process root directory and relative, which refer to a
(more dynamic and also per-process) working directory. Additionally, POSIX
allows the programmer to specify paths relative to any directory, to which
they have a valid file descriptor (using the openat family of functions; in
DiOS, this is the primary interface).

Since DiOS does not have access to any kind of persistent storage (such
access would violate the desired reproducibility guarantees), it is important
that the file system can be conveniently seeded with data upon boot. This
is done using the protocol which was described in Section 6.1: each inode
is serialized using 3 blobs in the key-value data structure, using a common
vfs.N prefix for the keys, where N is a unique sequence number, and name,
stat and content are suffixes. The name attribute is the path under which
the object is linked, stat contains the inode metadata and content contains
the data (the content of regular files and the target path for symlinks). Like
any other data passed to DiOS during boot, the file system snapshot is easily
stored and re-used, allowing exact reproduction even if the original (host)
file system from which the data was captured has changed in the meantime.

6.6 DiVM Fault Mechanism

An important function of DiOS is, in the context of verification, the report-
ing of errors that arise in the program execution back to the user. There
are two components to this:

1. the interface between the underlying verifier, which reports errors to the
DiOS kernel in a manner similar to how CPUs notify kernels of standard
operating systems about error conditions such as access to unmapped
memory, writes to read-only memory, division by zero and so on,

2. the tracing interface, which allows DiOS to report arbitrary text output
back to the user, usually via the verification tool.

In addition to the errors detected by the virtual machine, the executing
code itself may signal a problem, and those are routed through the same
fault handler that the virtual machine invokes. A typical example would be
an assertion violation, or a variation thereof, like detection of deadlocks on
pthread mutexes, or detection of invalid (overlapping) memcpy or strcpy

arguments.



Reproducible Execution of POSIX Programs with DiOS 29

The fault handler then decides how to handle each reported error:

– ignore the error completely, resuming execution,
– report the error but continue execution, or
– report the error and kill the program under test,

based on the configuration parameters passed to the fault handler using
the system option mechanism described in Section 6.1. If execution is to be
resumed, an additional challenge arises in case the error was caused by a
branch (e.g. due to a conditional branch which depends on an uninitialized
value) or a call instruction (e.g. a wrong number or type of arguments).
Since the virtual machine invokes the handler as a normal function sitting
on top of the stack which caused the error, it is not possible to return
normally from the handler. For this reason, the virtual machine passes the
frame and the program counter value which describe the location at which
execution should resume in case the fault is ignored, and the fault handler
uses the control transfer mechanism described in Section 6.3.

6.7 Host ABI Compatibility

As outlined in Section 1.3 and Section 5.6, one of the goals of DiOS is to
be binary compatible with the host operating system. The main motivation
is to be able to directly re-use the bitcode that was used for verification
to generate native code to be used in production. Unfortunately, the libc

ABI is not standardized across different operating systems (and sometimes
not even across different versions of the same operating system).21 Since
DiOS aims to be a generic POSIX system (instead of emulating a particular
implementation), it is not realistic to hard-wire a particular ABI into DiOS;
instead, it should be able to automatically re-use the ABI provided by the
host operating system.

The ABI of a typical POSIX libc has a number of components, mainly:

1. any non-standard (platform-specific) API calls or variable references
that results from the expansion of a standard API call implemented
using macros (e.g. errno location expanded from the errno macro-
variable or assert failed expanded from the assert function-like
macro),

2. the numeric values of any POSIX-specified symbolic constants (e.g.
O RDONLY, MAP FIXED and so on),

21 Not all aspects of the ABI are relevant at the bitcode level. For example, the
function calling convention used by a given platform is specified in terms of low-
level, architecture-specific notions, like the names of CPU registers or the minutiae
of stack management. These do not affect DiOS directly, and we simply rely on
the LLVM native code generator to deal with this part of the ABI correctly.



30 Petr Ročkai et al.

3. the size and internal layout of any transparentstruct types22 specified
by POSIX,

4. the size of opaque (i.e. field access is not allowed by POSIX for those
types) but user-allocated types (jmp buf, pthread mutex t, . . . ),

5. the sizes and signedness of named integral types (pid t, mode t, . . . ),
6. system call numbers (i.e. the values of the SYS * macros).

Most of the information on the list is encoded in the C header files
provided by the host operating system and hence available to the system-
provided C compiler. Fortunately, for most of the items on the list, it is
not hard, even if perhaps tedious, to write C programs which simply print
out the relevant bits of information in a form that can in turn be used to
automatically generate the ABI-relevant sections of DiOS header files. We
use a straightforward script to write, compile and execute the relevant C
program. The output of this program is a single header file, which is made
available as part of the DiOS libc under the name sys/hostabi.h. This file
is then included in DiOS versions of standard headers and the information
stored there is used to build up the DiOS ABI.

The only type of information which is not easily extracted using this
automated approach falls under the first item of the above list. For such
macros, DiOS must be manually modified to be made aware of their expan-
sions on the targeted host system. While this is unfortunate, such macros
are comparatively rare and we are not aware of an approach which could
reliably automate the process.

7 Evaluation

We have tested DiOS in a number of scenarios, to ensure that it meets the
goals that we describe in Section 1.3. The first goal – modularity – is hard
to quantify in isolation, but it was of considerable help in adapting DiOS for
different use cases. We have used DiOS with success in explicit-state model
checking of parallel programs [1], symbolic verification of both parallel and
sequential programs [15], for verification of liveness (LTL) properties of
synchronous C code synthesized from Simulink diagrams, and for runtime
verification of safety properties of software [12]. DiOS has also been used for
recording, replaying and fuzzing system call traces [11].

22 Transparent (or non-opaque) types in the sense that user programs are allowed
to directly access their fields by name or via macro expansion. In those cases, the
compiler computes field offsets into the struct at compile time and hard-codes
the results into the generated bitcode or machine code.



Reproducible Execution of POSIX Programs with DiOS 31

Table 3. A summary of the test programs used in evaluation. Please note
that there is overlap between the individual tags. Tags marked with → are
a subset (or very nearly a subset) of the (unmarked) tag given above them.

tag cases included programs. . .

c 1258 are written in C
→ svcomp 504 were taken from SV-COMP
→ posix 59 specifically check POSIX APIs
→ libc 239 focus on testing the standard library
→ lang-c 56 test C language features
c++ 1669 are written in C++ (up to C++17)
→ libcxx 910 focus on testing the standard library
→ bricks 376 are unit tests of a utility library
→ lang-cpp 31 test C++ language features
→ exception 97 throw an exception at runtime
threads 320 use POSIX, C11 or C++11 threads
→ pthread 174 use the POSIX threading API
→ weakmem 77 execute under a relaxed memory model
sym 678 require symbolic execution to verify
error 612 contain a safety violation

7.1 Verification with DiVM

In this paper, we report on 3 sets of tests that we performed particularly to
evaluate DiOS. The first is a set of approximately 3000 test programs which
cover various aspects of the entire verification platform.23 Each of them
was executed in DiOS running on top of DiVM and checked for a number of
safety criteria: lack of memory errors, use of uninitialized memory, assertion
violations, deadlocks and arithmetic errors. Each of the programs is tagged
(labelled) with a list of categories.24 Both the summary in Table 3 and the
following breakdown are based on those tags.

In the case of parallel programs (about 320 in total, tag threads), all
possible schedules were explored. Additionally, approximately 700 of the
test programs depend on one or more input values (possibly subject to
constraints), in which case symbolic methods or abstraction were used to
cover all feasible paths through the program; those programs carry the sym

tag.

23 All test programs are available online at http://divine.fi.muni.cz/2020/

dios/, including scripts to reproduce the results reported in this and in the fol-
lowing sections.
24 Each test program contains the list of its assigned tags near the top (first or
second line) embedded in a comment in a machine-readable format. Names of all
parent directories in which the test cases are stored are appended to this list.
Please note that the tags are assigned and reviewed mostly manually, and hence
it is possible that minor inaccuracies have crept in.



32 Petr Ročkai et al.

The majority (1600) of the programs are written in C++ (tag c++), the
remainder in C (tag c), while a sixth of them (approximately 500) were
taken from the SV-COMP [2] benchmark suite (tagged svcomp). Roughly a
fifth of the programs contain a safety violation (tagged error), the location
of which is annotated in the source code. The results of the automated
analysis are in each case compared against the annotations. No mismatches
were found in the set.

All tests were performed on two host operating systems: Linux 4.19 with
glibc 2.28 and on OpenBSD 6.6, with no observed differences in behaviour.

7.2 The KLEE Port

The KLEE port was evaluated on a subset of the programs considered in Sec-
tion 7.1. In particular, parallel programs (tag threads) and programs which
use non-local control flow (setjmp and C++ exceptions, tagged setjmp and
exception, respectively) were excluded. More than half of the test cases
(approximately 1900) have made it into the KLEE evaluation set.

The selection notably included test cases focused on file system and
socket support (50 programs, tagged posix) and those exercising the stan-
dard C and C++ libraries shipped with DiOS (234 cases tagged libc and
829 tagged libcxx, respectively). The set also included most of the SV-
COMP benchmarks (434 programs), and in those cases, like with DiVM,
all possible inputs were covered (using symbolic memory support built into
KLEE). The KLEE port also supports fault injection, which was enabled in
the test programs which call for its use.

Out of the selected subset, 5 test cases timed out or were too slow and
one test case failed: in this case, an out-of-bounds memory access was not
detected by KLEE, since it fell within the small metadata area that the DiOS
memory allocator adds to all objects. This deficiency could be addressed by
altering the metadata scheme used by the DiOS KLEE port. The remaining
test cases have all completed successfully, and KLEE has identified all the
annotated safety violations in these programs.

7.3 The Native Port

The other DiOS port targets native execution. We have used the same ap-
proach as we have for evaluating the DiVM and KLEE ports, compiling the
applicable subset of the 3000 test programs and executing each of them. In
this case, the selected subset contained slightly more than 1700 test pro-
grams. Unlike the KLEE port, most parallel programs were included in the
set, as were programs which use C++ exceptions and the setjmp function.
The biggest group that was excluded from this part of the evaluation were
benchmarks from SV-COMP, since they very often rely on indeterminate
input values.



Reproducible Execution of POSIX Programs with DiOS 33

Unlike the other two ports, however, this evaluation approach fails to
cover an important port-specific use case: replaying counterexamples ob-
tained from a DiVM-based model checker. The motivation for this would be
to leverage standard debugging tools such as gdb for a more comfortable
analysis of the underlying cause of the detected problem. The methodol-
ogy does, however, establish the viability of the other important use case:
isolation of the program under test from the host operating system, with
the intention of improving reproducibility of any given trial execution. This
particularly pertains to programs which interact with the file system and
to parallel programs. Finally, we have considered the case of fault injection,
which we have found viable, even though it is harder to use with the native
port than it is with the DiVM and KLEE ports.

Unlike with the other ports, exploring multiple different executions of
a given test program is not entirely straightforward – for this reason, for
the bulk evaluation, we have taken a single execution for each program,
with fault injection disabled. Each non-deterministic choice (see also Sec-
tion 3.4) was taken based on a pseudo-random sequence with a fixed (but
configurable) initial seed. This means that in many cases, errors the presence
of which depends on the outcomes of a race conditions were not detected. A
further limitation stems from the fact that memory errors, especially out-of-
bounds memory access, cannot be reliably detected. Some of the programs
finished successfully, even though they contained a memory error.

After excluding undetected race conditions and memory errors, remain-
ing test programs have all behaved as expected, either crashing (due to a
failed assertion, a segmentation fault, a division by zero and so on) or com-
pleting without errors, in accordance with the annotations in the programs.

user program host libc

DiOS headers bitcode native code user

DiOS bitcode full bitcode verification

Fig. 4. Building verified executables with DiOS.

7.4 API and ABI Coverage and Compatibility

Finally, to evaluate our third goal, we have compiled a number of real-
world programs against DiOS headers and libraries and manually checked
that they behave as expected when executed in DiOS running on DiVM,
fully isolated from the host operating system. The compilation process itself
exercises source-level (API) compatibility with the host operating system.

We have additionally generated native code from the bitcode that re-
sulted from the compilation using DiOS header files (see Figure 4) and which



34 Petr Ročkai et al.

we confirmed to work with DiOS libraries. We then linked the resulting ma-
chine code with the libc of the host operating system (glibc 2.29 in this
case). We have checked that the resulting executable program also behaves
as expected, confirming a high degree of binary compatibility with the host
operating system. The programs we have used in this test were the following
(many of which come from the GNU software collection):

– coreutils 8.30, a collection of 107 basic UNIX utilities, out of which
100 compiled successfully (we have tested a random selection of those),

– diffutils 3.7, programs for computing differences between text files
and applying the resulting patches – the diffing programs compiled and
diff3 was checked to work correctly, while the patch program failed to
build due to lack of exec support on DiOS,

– sed 4.7 builds and works as expected,
– make 4.2 builds and can parse makefiles, but it cannot execute any rules

due to lack of exec support,
– the testsuite of the Eigen project, which provides efficient C++ im-

plementations of linear algebra operations, was built and tested with
success,

– SQLite 3.28.0, a widely used embedded SQL database engine, builds
with minor limitations (support for dlopen is missing from DiOS), but
binaries fail to work due to ABI incompatibility of the DiOS libpthread

library,
– Berkeley DB 4.6.21, another database management library, more tightly

coupled to the client application, builds okay but exhibits the same
libpthread problem as SQLite,

– zlib 1.2.11, a simple compression library, builds and works as expected,
– libpng 1.6.37, a library for reading and writing Portable Network

Graphics files, builds and works as expected, including example pro-
grams which demonstrate basic PNG file manipulation,

– the wget download program failed to build due to lack of gethostbyname
support, the cryptographic library nettle failed due to deficiencies in
our compiler driver and mtools failed due to missing langinfo.h sup-
port.

8 Conclusions & Future Work

We have presented DiOS, a POSIX-compatible operating system designed to
offer reproducible execution, with special focus on applications in program
verification. The larger goal of verifying unmodified, real-world programs
requires the cooperation of many components, and a model of the operat-
ing system is an important piece of the puzzle. As the case studies show,
the proposed approach is a viable way forward. Just as importantly, the
design goals have been fulfilled: we have shown that DiOS can be success-
fully ported to rather dissimilar platforms, and that its various components



Reproducible Execution of POSIX Programs with DiOS 35

can be disabled or replaced with ease. We have also demonstrated that bit-
code of a program compiled for DiOS can be further processed into a native
executable targeting the host system (with some limitations).

Implementation-wise, there are two important future directions: first, the
coverage and compatibility of the DiOS-provided API with real operating
systems can be further improved. Second, existing ports can be extended
to cover more functionality, and it is possible and desirable to create new
ports for additional verification platforms.

In terms of design challenges, we would like to improve support for
multi-process and multi-image programs, including support for the exec

syscall and for dynamically loaded shared libraries. We also believe that
the mechanism for thread scheduling, most importantly for integration with
sophisticated state space reductions, can be both simplified and significantly
improved.

References

1. Zuzana Baranová, Jǐŕı Barnat, Kataŕına Kejstová, Tadeáš Kučera, Hen-
rich Lauko, Jan Mrázek, Petr Ročkai, and Vladimı́r Štill. Model check-
ing of C and C++ with DIVINE 4. In ATVA 2017, volume 10482
of LNCS, pages 201–207. Springer, 2017. URL https://divine.fi.

muni.cz/2017/divine4.
2. Dirk Beyer. Reliable and reproducible competition results with

BenchExec and witnesses report on SV-COMP 2016. In TACAS, pages
887–904. Springer, 2016. doi: 10.1007/978-3-662-49674-9\ 55.

3. Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage tests for complex sys-
tems programs. In OSDI, pages 209–224. USENIX Association, 2008.

4. Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The
S2E platform: Design, implementation, and applications. ACM Trans.
Comput. Syst., 30(1), February 2012. doi: 10.1145/2110356.2110358.

5. Fernando Chirigati, Dennis Shasha, and Juliana Freire. Reprozip: Us-
ing provenance to support computational reproducibility. In Theory
and Practice of Provenance, pages 1:1–1:4, Berkeley, CA, USA, 2013.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=

2482949.2482951.
6. Matthias Daum, Norbert Schirmer, and Mareike Schmidt. From

operating-system correctness to pervasively veried applications. In
Integrated Formal Methods, pages 105–120, 10 2010. doi: 10.1007/
978-3-642-16265-7 9.

7. James Frew, Dominic Metzger, and Peter Slaughter. Automatic capture
and reconstruction of computational provenance. Concurr. Comput. :
Pract. Exper., 20(5):485–496, 2008. ISSN 1532-0626. doi: 10.1002/cpe.
v20:5.

8. Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh.
Simulation and formal verification of x86 machine-code programs that



36 Petr Ročkai et al.

make system calls. 2014 Formal Methods in Computer-Aided Design
(FMCAD), pages 91–98, 2014.

9. O. Inverso, T. L. Nguyen, B. Fischer, S. L. Torre, and G. Parlato. Lazy-
CSeq: A context-bounded model checking tool for multi-threaded C-
programs. In Automated Software Engineering, pages 807–812, 2015.
doi: 10.1109/ASE.2015.108.

10. Shrinivas Joshi and Alessandro Orso. SCARPE: A technique and tool
for selective capture and replay of program executions. In International
Conference on Software Maintenance, pages 234 – 243, 2007. ISBN
978-1-4244-1256-3. doi: 10.1109/ICSM.2007.4362636.

11. Kataŕına Kejstová. Model checking with system call traces. Master’s
thesis, Masarykova univerzita, Fakulta informatiky, Brno, 2019. URL
http://is.muni.cz/th/tukvk/.

12. Kataŕına Kejstová, Petr Ročkai, and Jǐŕı Barnat. From model check-
ing to runtime verification and back. In Runtime Verification, vol-
ume 10548 of LNCS, pages 225–240. Springer, 2017. doi: 10.1007/
978-3-319-67531-2\ 14.

13. Soonho Kong, Nikolai Tillmann, and Jonathan de Halleux. Automated
testing of environment-dependent programs - a case study of modeling
the file system for pex. In International Conference on Information
Technology: New Generations, pages 758–762, 2009. doi: 10.1109/ITNG.
2009.80.

14. Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris
Bruynooghe, Brianna Laugher, and Florian Bruhin. pytest 4.5,
2004. URL https://github.com/pytest-dev/pytest.

15. Henrich Lauko, Vladimı́r Štill, Petr Ročkai, and Jǐŕı Barnat. Extending
DIVINE with symbolic verification using SMT. In TACAS, pages 204–
208, Cham, 2019. Springer.

16. Watcharin Leungwattanakit, Cyrille Artho, Masami Hagiya, Yoshinori
Tanabe, Mitsuharu Yamamoto, and Koichi Takahashi. Modular soft-
ware model checking for distributed systems. IEEE Transactions on
Software Engineering, 40:483–501, 05 2014. doi: 10.1109/TSE.2013.49.

17. Tim Mackinnon, Steve Freeman, and Philip Craig. Extreme program-
ming examined. chapter Endo-testing: Unit Testing with Mock Ob-
jects, pages 287–301. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001. ISBN 0-201-71040-4. URL http://dl.acm.

org/citation.cfm?id=377517.377534.
18. S. Mostafa and X. Wang. An empirical study on the usage of mocking

frameworks in software testing. In International Conference on Quality
Software, pages 127–132, 2014. doi: 10.1109/QSIC.2014.19.

19. Madan Musuvathi, Shaz Qadeer, Tom Ball, Gerard Basler, Pira-
manayakam Arumuga Nainar, and Iulian Neamtiu. Finding and repro-
ducing heisenbugs in concurrent programs. In Symposium on Operating
Systems Design and Implementation. USENIX, 2008.

20. Petr Ročkai, Vladimı́r Štill, Ivana Černá, and Jǐŕı Barnat. DiVM: Model
checking with LLVM and graph memory. Journal of Systems and Soft-



Reproducible Execution of POSIX Programs with DiOS 37

ware, 143:1 – 13, 2018. doi: 10.1016/j.jss.2018.04.026.
21. Björn Wachter, Daniel Kroening, and Joel Ouaknine. Verifying multi-

threaded software with impact. In Formal Methods in Computer-
Aided Design, pages 210–217. IEEE, 2013. doi: 10.1109/FMCAD.2013.
6679412.

22. Yu Yang, Xiaofang Chen, and Ganesh Gopalakrishnan. Inspect: A run-
time model checker for multithreaded C programs. Technical report,
2008.

23. Vladimı́r Štill, Petr Ročkai, and Jǐŕı Barnat. Using off-the-shelf ex-
ception support components in C++ verification. In Software Quality,
Reliability and Security, pages 54–64. IEEE, 2017. doi: 10.1109/QRS.
2017.15.


