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Abstract Automatic abstraction is a powerful software

verification technique. In this paper, we elaborate an

abstract domain for C strings, that is, null-terminated

arrays of characters. The domain we present (called

M-String) is parametrized on an index (bound) domain

and a character domain. Picking different constituent

domains, i.e., both shape information on the array struc-

ture and value information on the contained characters,

allows M-String to be tailored for specific verification

tasks, balancing precision against complexity. We de-

scribe the concrete and the abstract semantics of basic

string operations and prove their soundness formally.

In addition to a selection of string functions from the

standard C library, we provide semantics for character ac-

cess and update, enabling automatic lifting of arbitrary

string-manipulating code into the domain.

In addition to describing the domain theoretically,

we also provide an executable implementation of the

abstract operations. Using a tool which automatically

lifts existing programs into the M-String domain along

with an explicit-state model checker, we evaluate the

accuracy of the proposed domain experimentally on

real-case test programs.
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1 Introduction1

The C programming language is still very relevant [4]:

a large number of systems of critical importance are

written in C, including server software and embedded

systems. Unfortunately, due to the way C programs are

laid out in memory, they often contain bugs that can

be exploited by malicious parties to mount security at-
tacks. Guaranteeing correctness of such software is of

great concern. In particular, we are interested in ensur-

ing correctness of C programs that manipulate strings.

Incorrect string manipulation can cause a number of

catastrophic events, ranging from crashes in critical

software components to loss or exposure of sensitive
data.

In the C programming language, strings are not a

basic data type and operations on them are provided as

library functions [3]. Indeed strings are represented as

zero-terminated arrays of characters – due to the possi-

ble discrepancy between string size and array (buffer)

size, C programs which manipulate strings can suffer

from buffer overflows and related issues. A buffer over-

flow is a bug that affects C code which incorrectly tries

to access a buffer outside its bounds – an out-of-bounds

write (a related bug – an out-of-bounds read – is also a

problem, even though not as immediately dangerous as

a buffer overflow). Moreover, buffer overflows are usually

exploitable and often can easily lead to arbitrary code

execution [26]. In the light of these facts, it is clearly

important to investigate methods to automatically rea-
son about correctness of string manipulation code in C

programs. Automated code analysis tools can identify

existing bugs, reduce the risk of introducing new bugs

and therefore help prevent costly security incidents.

1This paper is a revised and extended version of [6] and
[8].
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1.1 Paper Contribution

In this paper, we present a sound approach for con-

ducting string analysis in C programs. We define the

M-String abstract domain which approximates sets of
C character arrays. This domain allows the abstraction

of both shape information on the array structure and

value information on the contained characters, and it

highlights the presence of well-formed strings in the

approximated character arrays. M-String is based on

a refinement of the segmentation approach to array

representation proposed in [13].

The goal of M-String is to infer the presence of

common string manipulation errors that may result

in buffer overflows or, more generally, that may lead

to undefined behaviour. Additionally, keeping track of

the content of the character array after the first null

character allows us to reduce false positives: in particular,

rewriting the first null character in the string is not
always a bug, since further null characters may follow.

Finally, M-String, like the array segmentation-based

representation defined in [13], is parametric with respect

to the abstraction of the array elements value, and the
representation of array indices.

Additionally, we have extended LART [22], a tool

which can perform automatic abstraction on programs,

with support for more complicated (non-scalar) domains,

which allowed us to also integrate the M-String domain.

By using the extended version of LART along with DI-
VINE 4 [2], an explicit state model checker based on

LLVM, we can automatically verify correctness of string

operations in C programs. We demonstrate this capabil-

ity by analyzing a number of C programs, ranging from
quite simple to moderately complex, including parsers

generated by bison, a tool which translates context-free

grammars into C parsers. The main contribution of this

paper is in demonstrating the actual impact of an ad-hoc

segmentation-based abstract domain on model checking

of C programs.

1.2 Paper Structure

Section 2 presents related works. Section 3 gives basics

in abstract interpretation and introduces the array seg-

mentation abstract domain [13] on which M-String is

based. Section 5 defines the concrete domain and seman-

tics. Section 6 presents the M-String abstract domain for

C character arrays and its semantics, whose soundness

is formally proved. Section 10 concludes.

2 Related Work

Static methods with the ability to automatically de-

tect buffer overflows have been widely studied in the

literature and many different inference techniques were

proposed and implemented: constraint solvers for various

theories (including string theories) and techniques based

on them (e.g., symbolic execution), tainted data-flow

analysis, string pattern matching analysis or annota-

tion analysis [30]. Additionally, a large number of bug

hunting tools based on static analysis and the above

mentioned techniques have been implemented [33, 32,

14, 15, 16, 24].

For instance, in [18] authors introduced a performant

backward compatible method of bounds checking of C

programs, i.e., the representation of pointers is left un-

changed (thus differentiating the proposed schema from

previously existing techniques), allowing inter-operation

between checked and unchecked code, with recompi-

lation confined to the modules where problems might

occur. In [14], a static verifier of C strings has been

presented, namely CSSV. Contracts are supplied to the

tool, which acts in 4 stages, reducing the problem of

checking code that manipulates string to checking code

that manipulates integers. Finally, Splat, described in

[34], is a tool that automatically generates test inputs,

symbolically reasoning about lengths of input buffers.

Briefly, static code analysis attempts to quickly ap-

proximate possible behaviours of a program, without

examining its actual executions. This way, static analy-

sis reasons about many of the possible runs of a program

and provides a degree of assurance that the property

of interest holds (or that it is violated). However, with

static analysis, neither positive nor negative results are

guaranteed to be correct [27].

Various researchers have shown how the framework

of abstract interpretation [10] can be used to approx-

imate semantics of string operations. The basic, well-

known domain is a string set domain, which simply

keeps track of a set of strings – this is a specific instance

of the general (bounded) set domain. Other are the

character inclusion domain (which keeps track of which

characters appear in a string, but not in what order

or how many times), the prefix-suffix domain (which

keeps track of the first and the last letter) and their var-

ious products. Another general-purpose string domain

is the string hash domain proposed in [23], based on a

distributive hash function. A more complete review of

general-purpose string domains is readily available in

the literature, e.g. [9, 1].

Such general-purpose domains focus on the generic

aspects of strings, without accounting for the specifics

of string handling in different programming languages.
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It is, however, often beneficial to consider such specific

aspects of string representation when designing abstract

domains for program analysis: indeed, M-String is a

domain tailored specifically for the representation of

strings used in C programs. With regards to the C pro-

gramming language, [19] proposed an abstract domain

for C strings which tracks both their length and the buffer

allocated size into which their are contained. Then, the

latter domain, together with the cell abstraction [25], de-

scribes relations between length of variables and offsets

of pointers. A number of abstract string domains (and
their combinations) for analysis of JavaScript programs

have been evaluated in [1]. Another domain that was

conceived for JavaScript analysis is the simplified reg-

ular expression domain defined in [28]. While dynamic

languages heavily rely on strings and their analysis bene-

fits greatly from tailored abstract domains, the specifics

of the C approach to strings also deserves attention: the

M-String domain, tailored for modeling zero-terminated

strings stored in character buffers in C programs has first

been described in [6]. In addition to theoretical work, a

number of tools based on the above mentioned abstract

domains and their combinations have been designed and

implemented [31, 17, 20, 28].

3 Prerequisites

We assume the reader is familiar with order theory.

3.1 Abstract Interpretation

Abstract Interpretation [10, 11] is a theory about sound

approximation or abstraction of semantics of computer

programs, focusing on some run-time properties of in-

terest. Formally, the concrete semantics belongs to a

concrete domain D. Likewise, the abstract semantics

belongs to an abstract domain D. Both the concrete and

the abstract domains form a complete lattice, such that:

(D,≤D,⊥D,>D,tD,uD) and (D,≤D ⊥D,>D,tD,uD).

The concrete and the abstract domains are related

by a pair of monotonic functions: the concretization

γD : D→ D and the abstraction αD : D→ D functions.

In order to obtain a sound analysis, αD and γD have

to form a Galois connection [9]. (αD, γD) is a Galois

connection if and only if for every d ∈ D and d ∈ D we

have that d ≤D γD(d)⇔ αD(d) ≤D d . Notice that, one

function univocally identifies the other. Consequently,

we can infer a Galois connection by proving that γD is

a complete meet morphism (resp. αD is a complete join

morphism) (Proposition 7 of [12]). Abstract domains

suffering from infinite heights need to be equipped with

a widening ∇D and a narrowing ∆D operator, in order

to get fast convergence and to improve the accuracy

of the resulting analysis, respectively [7]. An abstract

domain functor D is a function from the parameter

abstract domains D1,D2, ...,Dn to a new abstract do-

main D(D1,D2, ...,Dn). The abstract domain functor

D(D1,D2, ...,Dn) composes abstract domain properties

of the parameter abstract domains to build a new class

of abstract properties and operations [13].

3.2 FunArray

In this section we recall the array segmentation analysis

introduced in [13]. Notice that we slightly modified the

notation to be consistent with the whole work. For more

details, we invite the reader to refer directly to the

original paper.

3.2.1 Array Concrete Semantics

The concrete value of an array variable a ∈ A can be

represented as a quadruple

θ(a) ∈ A , Rv × E× E× (Z→ (Z× V))

θ(a) = (ρ, `owa, higha, Aa)

where,

1) Ra is the set of concrete array environments. A con-

crete array environment θ ∈ Ra maps array variables

a ∈ A to their values θ(a) ∈ A.

2) Let Rv be the set of concrete variable environments.

The function ρ ∈ Rv , X→ V is a variable environ-

ment which maps variables (of basic types) x ∈ X to

their values ρ(x) ∈ V.

3) `owa, higha ∈ E are integer expressions whose value,

given by [[`owa]]ρ and [[higha]]ρ, respectively repre-

sents the lower bound and the upper bound of the

array a.

4) Aa is a function which maps indexes i ∈ [[[`owa]]ρ,

[[higha]]ρ) to the pair Aa(i) = (i, v) such that v is the

value of the element indexed by i, i.e., Aa : Ia → Pa.

Ia = {i : i ∈ [[[`owa]]ρ, [[higha]]ρ)}
Pa = {(i, v) : i ∈ Ia ∧ [[a[i]]]ρ = v ∈ V}

Example 1 Let a be a C integer array initialized as fol-

lows:

int a[5] = {5, 7, 9, 11, 13};

The concrete value of a is given by the tuple

θ(a) = (ρ, 0, 5, Aa),

where the value of the lower and the upper bound of

a are clear from the context and the codomain of the

function Aa is the set
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Pa = {(0, 5), (1, 7), (2, 9), (3, 11), (4, 13)}.

Let b denote the sub-array of a from position 2 to 3

included, its concrete value is given by

θ(b) = (ρ, 2, 4, Ab) such that Pb = {(2, 9), (3, 11)}.

Observe that this array representation allows to rea-

son about the correspondence between shape compo-

nents of an array and actual values of the array elements.

3.2.2 Array Segmentation Abstract Domain Functor

The FunArray abstract domain S allows to represent a

sequence of consecutive, non-overlapping and possibly

empty segments that over-approximate a set of concrete

array values in P(A). Each segment represents a sub-

array whose elements share the same property (e.g.,

being positive integer values) and is surrounded by the

so-called segment bounds, i.e., abstractions on its lower
and upper bound. The elements of FunArray belong to

the set S , {(B×A)× (B×A×{ ,?})k × (B×{ ,?}) |
k > 0} ∪ {⊥S}, which have the form

b1p1b2[?2]p2...pn−1bn[?n]

where,

1) B is the segment bound abstract domain, approxi-

mating array indexes, with abstract properties bi ∈ B
such that i ∈ [1, n] and n > 1.

2) A is the array element abstract domain, with ab-

stract properties pi ∈ A. It denotes possible values

of pairs (index, indexed array element) in a segment,

for relational abstractions, array elements otherwise.

3) R is the variable environment abstract domain,

which depends on the variable abstract domain X,

with abstract properties ρ ∈ R.

4) the question mark, if present, expresses the possibil-

ity that the segment that precedes it may be empty

and can never precede b1 (the question mark oppo-

site symbol is represented by the text visible space

symbol , but in general not empty segments are not
marked).

Example 2 Let B be an interval abstraction of indexes

and let A be a sign abstraction of numerical values and

R be the arithmetic expression evaluation environment.

The segmentation abstract predicate below

[0, 2] + [3, 3]? − [5, 7]

represents arrays like:

6
0

8
1

5
2

-4
3

-2
4

7
0

9
1

10
2

-11
3

-9
4

-8
5

-3
6

-2
0

-6
1

-3
2

-1
3

-6
4

-8
5

Notice that, in the last case, the lack of positive values

is justified by the presence of the question mark that

says that the first segment is optional.

The paper [13] defined the unification algorithm that

modifies two compatible segmentations2 so that they

coincides (cf. [13], Section 11).

The array segmentation abstract domain is a com-

plete lattice where the lattice operators are unification-

based. Finally, the lattice is equipped with a widening

and a narrowing operators.

Such an abstract array representation is effective for

analyzing the content of arrays, but in the case of the

C programming language where a string is defined as a

null-terminating character array, it is not sophisticated

enough to detect common string manipulation errors.

4 Syntax

Strings in the programming language C are arrays of

characters, whose length is determined by a terminating

null character '\0'. Thus, for example, the string literal

''bee'' has four characters: 'b', 'e', 'e', '\0'. Moreover,
C supports several string handling functions defined in
the standard library string.h.

We focus on the most significant functions in the

string.h header (see Table 1), manipulating null-termi-

nated sequences of characters, plus the array elements

access and update operations. Recall that char, int and

size_t are data types in C, const is a qualifier applied

to the declaration of any variable which specifies the

immutability of its value, and *str denotes that str is

a pointer variable, in [5]:

• strcat appends the null-terminated string pointed

to by str1 to the null-terminated string pointed to

by str2. The first character of str2 overwrites the

null-terminator of str1 and, str2 should not overlap

str1. The string concatenation returns the pointer

str1.

2Two segmentations, b
1
1...b

1
n[?1n] and b

2
1...b

2
n[?2n], are com-

patible if they have same lower and upper bounds, i.e., b
1
1 = b

2
1

and b
1
n = b

2
n.
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char *strcat(char *str1, const char *str2)

char *strchr(char *str, int c)

int strcmp(const char *str1, const char *str2)

char *strcpy(char *str1, const char *str2)

size_t strlen(const char *str)

Table 1: String functions syntax in C

• strchr locates the first occurrence of c (converted

to a char) in the string pointed to by str. The

terminating null character is considered to be part

of the string. The string character function returns
a pointer to the located character, or a null pointer

if the character does not occur in the string.

• strcmp lexicographically compares the string pointed

to by str1 to the string pointed to by str2. The

string compare function returns an integer greater

than, equal to, or less than zero, accordingly as the

string pointed to by str1 is greater than, equal to,

or less than the string pointed to by str2.

• strcpy copies the null-terminated string pointed to

by str2 to the memory pointed to by str1. str2

should not overlap str1. The string copy function

returns the pointer str1.

• strlen computes the number of bytes in the string

to which str points, not including the terminating

null byte. The string length function returns the

length of str.

Accessing an array element is possible indexing the

array name. Let i be an index, the i-th element of

the character array str is accessed by str[i]. On the

other hand, a character array element is updated (or an

assignment is performed to a character array element)

by str[i] = 'x', where 'x' denotes a character literal.

As mentioned in Section 1, C does not guarantee

bounds checking on array accesses and, in case of strings,

the language does not ensure that the latter are null-

terminated. As a consequence, improper string manipu-

lation leads to several vulnerabilities and exploits [29].

For instance, if non null-terminated strings are passed

to the functions above, the latter may return mislead-

ing results or read out of the array bound. Moreover,

since strcat and strcpy do not allow the size of the

destination array str1 to be specified, they are frequent

sources of buffer overflows.

5 Concrete Domain and Semantics

Our aim is to capture the presence of well-formed string

in C character arrays, to avoid undesired execution be-

haviours that may be security relevant. Thus, we define

the concrete value of a character array stigmatizing the

occurrence of null characters in it and we present the

notion of the so-called string of interest of an array of

chars. The concrete semantics relative to the operations

presented in Section 4 is also given.

5.1 Character Array Concrete Semantics

Let C = C ∪ {>C} be a finite set of characters C repre-

sentable by the character encoding in use equipped with

a top value >C representing an unknown value, and let

M = C∗ be the set of all the possible character array

variables. Then, the operational semantics of character

array variables (m ∈M ⊆ A) are concrete array environ-
ments µ ∈ Rm mapping character arrays m ∈M to their

values µ(m). Precisely,

µ(m) ∈M , Rv × E× E× (Z→ (Z× C))× Z
µ(m) = (ρ, `owm, highm,Mm,Nm)

so that Rm , M → M, where Rv and E are the

variable environment and the expression domain defined

in Section 3.2 respectively, Z is the integer domain and,

C is the execution character set.

Notice that, with respect to the concrete array envi-

ronment θ defined in Section 3.2, the function µ returns

as a last component the set of indexes which map to the

string terminating characters.

Nm = {i : i ∈ [[[`owm]]ρ, [[highm]]ρ) ∧Mm(i) = (i,'\0')}
Thus, M extends A (c.f., Section 3.2) by adding a

parameter that takes into account the presence of null

characters in a character array. Notice that for well-

formed strings, Nm cannot be empty. Moreover, char-

acter array elements which have not been initialized

are mapped to the top value >C as they may be values

already present in the memory assigned to the locations

array itself.

Example 3 Consider the simple program below which

concatenates two well-formed strings.

1 #include <stdio.h>

2 #include <string.h>

3

4 int main() {

5 char x[10] = "aaa";

6 char y[4] = "bbb";

7 strcat(x,y);

8 }

In this program, the string concatenation behaves

correctly as the size of the destination array x is big
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enough to store all the characters from the source array y.

That said, the concrete value of x at program point 13 is

given by µ(x) = (ρ, 0, 10,Mx,13,Nx,13) where, the lower

and the upper bounds of the character array x are clear

from the context, Px,13, the codomain of Mx,13 (cf. Sec-

tion 3.2), is the set {(0,'a'), (1,'a'), (2,'a'), (3,'b'), (4,'b'),

(5,'b'), (6,'\0'), (7,>C), (8,>C), (9,>C)} and, Nx,13 is the

singleton {6}, being the array cell of index 6 the only

one containing a null character.

5.1.1 String of Interest

We formally define the string of interest of a character

array as the sequence of characters up to the termination

character (included).

Definition 1 (string of interest) Let m ∈ M be an

array of characters with concrete value given by

m = µ(m) = (ρ, `owm, highm,Mm,Nm)

and let k be the minimum element of Nm (if it is non-

empty). The string of interest of m is defined as follows,

s(m) =

〈vi : i ∈ [[[`owm]]ρ, k] ∧Mm(i) = (i, v)〉 if Nm 6= ∅

undef otherwise

Our definition of string of interest of character arrays

allows us to distinguish well-formed strings and avoid

bad usage of arrays of characters. Notice that, in the

case where the null character occurs at the first index of

a character array, then we refer to its string of interest

as null (null). In general, we refer to character arrays

which contain a well-defined or null string of interest as

character arrays which contain a well-formed string.

Moreover, when allocated memory capacity is not
sufficient for a declared character array, the system

writes null character outside the array, occupying mem-

ory that is not destined for it and causing a buffer

overflow. We do not represent this system behaviour,

since it leads to an undefined one, so we simply consider

the string of interest of such character arrays as unde-

fined (undef). Notice that, the strtok()3 function in

string.h library can be used as a “remedy”, as it sub-

stitutes delimiters occurring in a character array with

null characters; however, if the character array given

as input is not a well-formed string and none of the
defined separators belongs to the considered array, then

the function results in an undefined behaviour too.

3The C library function char *strtok(char *str, const

char *sep) breaks string str into a series of tokens using the
delimiter sep. This function returns a pointer to the last token
found in the string. A null pointer is returned if there are no
tokens left to retrieve [cite].

5.2 Concrete Domain

As a concrete domain for array of characters we re-

fer to the complete lattice M defined as (P(M),⊆M

,⊥M,>M,∪M,∩M) where, P(M) is the powerset of con-

crete array values, i.e., the set containing all the subsets

of M, the set inclusion ⊆M corresponds to the partial

order, the bottom element ⊥M is the emptyset ∅, the

top element >M is the superset of any subset ofM (i.e.,

M itself), the set union ∪M denotes the least upper

bound and, the set intersection ∩M denotes the greatest

lower bound.

We highlight the fact that the concrete domain we

present is used as a framework that helps us in con-

structing the abstract representation, and it is not how

the (concrete) character array values are actually repre-

sented in C programs.

5.3 Concrete Semantics

In order to formalise the concrete semantics of the C

standard library functions from string.h introduced

in Section 4, the following auxiliaries functions emb, cut

and sub need to be introduced.

Definition 2 (emb) Let m1, m2 ∈ M be two arrays of

characters with concrete value given by

m1 = µ(m1) = (ρ, `owm1 , highm1 ,Mm1 ,Nm1) and

m2 = µ(m2) = (ρ, `owm2 , highm2 ,Mm2 ,Nm2)

Moreover, let

n1, e1 ∈ [[[`owm1 ]]ρ, [[highm1 ]]ρ) and

n2, e2 ∈ [[[`owm2 ]]ρ, [[highm2 ]]ρ)

be indexes which properly range in the arrays bounds

with n1 6 e1 and n2 6 e2. Moreover, e1 has to be equal

to n1 + (e2−n2). The embedding of the character array

element values which occur from n2 to e2 in m2 into m1
from n1 to e1 is given by emb(m1, n1, e1,m2, n2, e2) =

m'

1 such that,

[[`owm'

1
]]ρ = [[`owm1 ]]ρ

[[highm'

1
]]ρ = [[highm1 ]]ρ

Mm'

1
: ∀i ∈ [[[`owm'

1
]]ρ, n1)

Mm'

1
(i) = (i, v) s.t. let k = i

Mm1(k) = (k, v)

∀i ∈ [n1, e1]

Mm'

1
(i) = (i, v) s.t.

let k = n2 + (i− n1)

Mm2(k) = (k, v)
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∀i ∈ (e1, [[highm'

1
]]ρ)

Mm'

1
(i) = (i, v) s.t. let k = i

Mm1(k) = (k, v)

Nm'

1
= (Nm1 − {i : i ∈ [n1, e1]}) ∪

{i : i ∈ [n2, e2] ∧Mm2(i) = (i,'\0')}

Definition 3 (cut) Let m ∈ M be an array of charac-

ters with concrete value given by

m = µ(m) = (ρ, `owm, highm,Mm,Nm)

and let

n, e ∈ [[[`owm]]ρ, [[highm]]ρ)

be two indexes which properly range in the array bounds

with n 6 e. The character array sub-value from n to e

of m is given by cut(m,n, e) = m' such that,

[[`owm']]ρ = n

[[highm']]ρ = e+ 1

Mm' : ∀i ∈ [[[`owm']]ρ, [[highm']]ρ)

Mm'(i) = (i, v) s.t. let k = i

Mm(k) = (k, v)

Nm' = Nm − {i : i 6∈ [[[`owm']]ρ, [[highm']]ρ)}

Definition 4 (sub) Let m ∈M be an array of charac-

ters with concrete value given by

m = µ(m) = (ρ, `owm, highm,Mm,Nm)

and let

z ∈ [[[`owm]]ρ, [[highm]]ρ)

be an index which properly ranges in the array bounds
and c be a character in the execution set. The substitu-

tion of the array element occurring at position z with c

is given by sub(m, z, c) = m' such that,

[[`owm']]ρ = [[`owm]]ρ

[[highm']]ρ = [[highm]]ρ

Mm' : ∀i ∈ [[[`owm']]ρ, z)

Mm'(i) = (i, v) s.t. let k = i

Mm(k) = (k, v)

i = z

Mm'(z) = (z, c)

∀i ∈ (z, [[highm']]ρ)

Mm'(i) = (i, v) s.t. let k = i

Mm(k) = (k, v)

Nm' =


Nm if (z ∈ Nm ∧ c is null) ∨

(z 6∈ Nm ∧ c is not null)

Nm − {z} if z ∈ Nm ∧ c is not null

Nm ∪ {z} otherwise

5.3.1 Array Access

The semantics operator C, given the statement accessj
and a set of concrete character array values M in P(M)

as parameter, returns a value in C (cf. Section 5.1). In

particular, accessj(M) returns the character v which

occurs at position j if all the character array values in M

contain v at index j and the latter is well-defined (i.e.,

it ranges in the array bounds) for all the character array

values in M; otherwise it returns >C. Formally,

C[[accessj ]](M)

=


v if ∀m ∈ M : j ∈ [[[`owm]]ρ, [[highm]]ρ) and

Mm(j) = (j, v)

>C otherwise

5.3.2 String Concatenation

The semantics operator M, given a statement and some

sets of concrete character array values in P(M) as pa-

rameters, returns a set of concrete character array values.

When applied to strcat(M1, M2), it returns all the possi-

ble embeddings in M1 of a string of interest taken from M2
if all the character array values (which belong to both M1
and M2) contain a well-formed string and the condition

on the size of the destination character array values is

fulfilled; otherwise it returns >M. Formally,

M[[strcat]](M1, M2)

=


M'

1 if ∀m1 ∈ M1 : ∀m2 ∈ M2 :

s(m1) 6= undef 6= s(m2) and

size.condition is true

>M otherwise

where M'

1 is the set of emb(m1, n1, e1,m2, n2, e2) such

that,

m1 ∈ M1

n1 = minNm1
, e1 = n1 + (minNm2

− [[`owm2 ]]ρ)

m2 ∈ M2

n2 = [[`owm2 ]]ρ, e2 = minNm2

and the size.condition is true if

([[highm1 ]]ρ− [[`owm1 ]]ρ) > [(minNm1
− [[`owm1 ]]ρ− 1)

+ (minNm2
− [[`owm2 ]]ρ)]

5.3.3 String Character

The semantics operator M, when applied to strchrv(M),

returns the set of string of interest suffixes in M from

the index corresponding to the first occurrence of the char-

acter v if all the character array values in M contain a well-

formed string containing v. Otherwise, if all the char-

acter array values in M contain a well-formed string
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in which does not occur the character v, it returns

the emptyset (i.e., ⊥M); otherwise it returns >M. For-

mally,

M[[strchrv]](M)

=


S if ∀m ∈ M : s(m) 6= undef and v ∈ s(m)

⊥M if ∀m ∈ M : s(m) 6= undef and v 6∈ s(m)

>M otherwise

In particular, S is the set of cut(m,n, e) such that,

m ∈ M

n = min{i : i ∈ [[[`owm]]ρ,minNm
] ∧Mm(i) = (i, v)}

e = minNm

5.3.4 String Compare

The semantics operator P, given the statement strcmp

and two sets of concrete character array values M1, M2
in P(M) as parameters, returns a value in the set of

integers equipped with a top element, i.e., Z ∪ >Z. In

particular, strcmp(M1, M2) returns an integer value n
which denotes the lexicographic order between strings

of interest in M1 and M2 if all the character array values

(which belong to both M1 and M2) contain a well-formed

string whose elements are fully initialized; otherwise it

returns>Z.

Notice that n will be strictly smaller than zero if

s(m1) precedes s(m2) in lexicographic order, equal to

zero if s(m1) are s(m2) lexicographically equivalent or

strictly greater than zero if s(m1) follows s(m2) in lexi-

cographic order. Formally,

P[[strcmp]](M1, M2)

=


n if ∀m1 ∈ M1 : ∀m2 ∈ M2 :

s(m1) 6= undef 6= s(m2) and

>C /∈ s(m1), s(m2)

>Z otherwise

In particular, n is obtained as defined in Algorithm 1.

Algorithm 1 Computing n

1: i1 = [[`owm1 ]]ρ

2: i2 = [[`owm2 ]]ρ

3: for i1 ∈ [[[`owm1 ]]ρ,minNm1
] ∧ i2 ∈ [[[`owm2 ]]ρ,minNm2

] do

4: n = vi1 − vi2
5: if n 6= 0 then

6: return n

7: else

8: i1 = i1 + 1

9: i2 = i2 + 1

10: return n

Notice that vi denotes the character array element

value v which occurs at position i, i.e., Mm(i) = (i, v).

5.3.5 String Copy

The semantics operator M, when applied to strcpy(M1,

M2), behaves similarly to the string concatenation func-

tion above. Formally,

M[[strcpy]](M1, M2)

=


M'

1 if ∀m1 ∈ M1 : ∀m2 ∈ M2 :

s(m1) 6= undef 6= s(m2) and

size.condition is true

>M otherwise

where M'

1 is the set of emb(m1, n1, e1,m2, n2, e2) such

that,

m1 ∈ M1

n1 = [[`owm1 ]]ρ, e1 = n1 + (minNm2
− [[`owm2 ]]ρ)

m2 ∈ M2

n2 = [[`owm2 ]]ρ, e2 = minNm2

and the size.condition is true if

([[highm1 ]]ρ− [[`owm1 ]]ρ) > (minNm2
− [[`owm2 ]]ρ)

5.3.6 String Length

The semantics operator Z, given the statement strlen

and a set of concrete character array values M in P(M)

as parameter, returns a value in the set of integers
equipped with a top element, i.e., Z ∪ >Z. In particular,

strlen(M) returns an integer value n which corresponds

to the length of the sequence of characters before the first

null one of the character arrays values in M if all the char-

acter array values in M contain a well-formed string of

the same length; otherwise it returns >Z. Formally,

Z[[strlen]](M)

=


n if ∀m ∈ M : s(m) 6= undef and

minNm
− [[`owm]]ρ = n

>Z otherwise

5.3.7 Array update

The semantics operator M, when applied to updatej,v
(M), returns the set of character array values in M where

the character that occurs at position j has been substi-

tuted with the character v if the index j is well-defined

for all the character array values in M; otherwise it re-

turns >M.
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Formally,

M[[updatej,v]](M)

=

M' if ∀m ∈ M : j ∈ [[[`owm]]ρ, [[highm)]]ρ)

>M otherwise

In particular, M' is the set of sub(m, j, v).

6 M-String

In the previous section we defined the concrete value

of a character array, which highlights the presence of

a well-formed string in it. Moreover, we presented our

concrete domain M, made of sets of character array

values, and its concrete semantics of some operations

of interest. In the following we formalize the M-String

abstract domain, which approximates elements in M,

and its semantics for which soundness is proved.

6.1 Character Array Abstract Domain

the M-String (M) abstract domain approximates sets

of character arrays with a pair of segmentations that

highlights the nature of their strings of interest. the el-

ements of the domain are split segmentation abstract

predicates. As for FunArray (recalled in Section 3.2),

segments capture sequences of identical abstract val-
ues, and are delimited by the so-called segment bounds.

More precisely, the M-String abstract domain is a func-

tor given by M(B,C,R).

1) B denotes the abstraction of segment bounds, equip-

ped with the following operations: least upper bound

between subsequent segment bounds (tB[bi, bi+1)),

addition (+B), and subtraction (−B).

2) C is the abstraction of the character array elements,

it is signed, it contains the value 0, and it is equipped

with is null, a special monotonic function lifting

abstract elements in C to a value in the set {true,

false, maybe}, and with subtraction (−C).

3) R denotes the abstraction of scalar variable envi-

ronments (cf. Section 3.2). Namely, the constant

propagation domain on the set of variables X.

M-String is a complete lattice

(M,6M,⊥M,>M,uM,tM)

where,

• M , (Ms ,Mns) ∪ {⊥M,>M}

- Ms corresponds to

{Ssb × S
k

sm × Sse | k > 0} ∪ Sse ∪ {∅}

and it represents the segmentation of the strings

of interest of a set of character arrays. Here,

Ssb = {B × C}
Ssm = {B × C × { , ?}}
Sse = {B × { }}

- Mns corresponds to

{Snsb × S
k

nsm × Snse | k > 0} ∪ {∅}
and it represents the segmentation of the content

of character arrays after their string of interests,

or character arrays that do not contain the null

terminating character. Here,

Snsb = Ssb
Snsm = Ssm
Snse = {B × { , ?}}

In particular (c.f. Section 3.2):

1) bi ∈ B denotes the segment bounds, chosen in

abstract domain B, such that i ∈ [1, n] and

n > 1 (b1 and bn respectively represent the seg-

mentation lower and upper bound). Notice that,

a segment bound approximates a set of indexes

(i.e., positive integers Z+). For the sake of read-

ability, we apply arithmetic operators on bi di-
rectly. For instance, b +B 1 should be read as

αB({i+ 1 : i ∈ γB(b)}).
2) pi ∈ C are abstract predicates, chosen in an ab-

stract domain C, denoting possible values of pairs

(index, character array element value) in a seg-

ment, for relational abstraction, character array

elements otherwise.

3) the question mark ?, if present, indicates that
the preceding segment might be empty, while

indicates a non-empty segment. Non-empty

segments are not marked.

Notice that, in M-String, the upper bound of

the left hand side parameter of a split segmenta-

tion, if different from the emptyset, will be always

followed by a text visible space . This means that

all the character arrays it approximates surely

contain a well-formed string.

the elements in M are split segmentation abstract

predicates of the form m = (s, ns). Let m ∈ M be

an array of characters with concrete value denoted

by m. For instance, if the string of interest of m is

null (see Section 5.1.1) then, m is equal to (b1 , ∅)
if the size of m is equal to 1, (b1 , b2p2b3[?3]bn[?n])

otherwise.

In the rest of the paper we will refer to the s and

to the ns parameters of a given split segmentation

abstract predicate m by m.s and m.ns respectively.
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• Let m1 and m2 be two abstract values in the M-

String domain. the partial ordering on M is defined

as follows. ∀m ∈ M : ⊥M 6M m. If m1 6= ⊥M and

m2 6= ⊥M, m1 and m2 are comparable only if they

can be normalised through unify. If this is the case,

let unify(m1,m2) = m'

1,m
'

2, m'

1 6M m'

2 if and only

if for each segment the relation 6C holds.

Here, unify refers to the unification algorithm origi-

nally defined in [13] (mentioned in Section 3.2) and

tweaked in [6] to modify two split segmentations so

that they coincide. Take m1 and m2 to be compatible
if their parameters have common lower and upper

bounds of s and ns. Then,

unify(m1,m2) = (unify(s1, s2), unify(ns1, ns2))

= (s'

1, ns
'

1), (s'

2, ns
'

2)

= m'

1,m
'

2

• ⊥M, >M are special elements denoting the bottom/-

top element of the lattice.

• uM represents the meet operator, that defines the great-

est lower bound between abstract elements.

Let unify(m1,m2) = m'

1,m
'

2, then m'

1 uM m'

2 =

(b
1

1uBb
2

1p
1
1uCp

2
1b

1

2uBb
2

2[?12]f[?22]...b
1

kuBb
2

k f , b
1

k+1uB

b
2

k+1p
1
k+1 uC p

2
k+1b

1

k+2 uB b
2

k+2[?1k+2]f [?2k+2]...b
1

n uB

b
2

n[?1n] f [?2n]). If m1 and m2 cannot be unified then

the greatest lower bound between m1 and m2 is

equal to ⊥M.

• tM represents the join operator, that defines the least

upper bound between two abstract elements.

Let unify(m1,m2) = m'

1,m
'

2, then m'

1 tM m'

2 =

(b
1

1tBb
2

1p
1
1tCp

2
1b

1

2tBb
2

2[?12]g[?22]...b
1

ktBb
2

k g , b
1

k+1tB

b
2

k+1p
1
k+1 tC p

2
k+1b

1

k+2 tB b
2

k+2[?1k+2]g [?2k+2]...b
1

n tB

b
2

n[?1n] g [?2n]). If m1 and m2 cannot be unified then

the least upper bound between m1 and m2 is equal

to >M.

M-String is equipped with a widening ∇M and a nar-

rowing ∆M operators, whose definitions follow those in

Section 11.5 of [13].

Abstraction Let M be a set of concrete character array

values. the abstraction function on the M-String abstract

domain αM maps M to ⊥M in the case in which M is

empty, otherwise to the pair of segmentations that best

over-approximates values in M.

Concretization the concretization function on the M-

String abstract domain γM maps an abstract element

to a set of concrete character array values as follows:

γM(⊥M) = ∅, otherwise γM(m) is the set of all possible

character array values represented by a split segmenta-

tion abstract predicate m.

Formally, we firstly define the concretization function

of a generic segment (bpb'[?]) (regardless of what part of

the split it is part of), following [13], which corresponds

to the set of character array values whose elements in

the segment [b, b'[?]) satisfy the predicate p. Let l and

h denote the character array lower and upper bound

respectively, then:

γ∗
M

(bpb'[?])ρ , {(ρ, l, h,M,N) | ρ ∈ γR(ρ) ∧
∃b,b' : b ∈ γB(b), b' ∈ γB(b') ∧

[[l]]ρ 6 b 6 b' 6 [[h]]ρ ∧
∀i ∈ [b, b') : M(i) ∈ γC(p) ∧

N = {i : M(i) = (i, '\0')}}
where γR ∈ R → P(Rv) is the concretization func-

tion for the variable environment abstract domain, γB ∈
B → P(Z+) is the concretization function for the seg-

ment bounds abstract domain, and γC ∈ C → P(Z× C)

is the concretization function for the array characters

abstract domain.

We remind that only the upper bound of m.s is

explicitly followed by a visible space ( ), preserving

a special meaning. Precisely, b is equivalent to the seg-

ment b pb' such that b' = b+B 1 and p is null.

an abstract element in the M-String domain is a pair
of segmentations. Thus, we define the concretization

function of the possible s and ns belonging to a character

array abstract predicate m, i.e., γ?
M
∈ M → R →

P(M).

γ?
M

(m.s)ρ

, {(ρ, l, h,M,N) ∈
k

+M
i=1

γ∗
M

(bi[ ]pibi+1[?i+1])ρ |

∃b1,bk : b1 ∈ γB(b1), bk ∈ γB(bk) ∧
b1 = [[l]]ρ ∧ bk + 1 6 [[h]]ρ}

if m.s = b1p1b2[?2]...bk

, γ∗
M

(b1 )ρ if m.s = b1

, ∅ otherwise.

γ?
M

(m.ns)ρ

, {(ρ, l, h,M,N) ∈
n−1

+M
i=1

γ∗
M

(bipibi+1[?i+1])ρ |

∃b1,bn : b1 ∈ γB(b1), bn ∈ γB(bn) ∧
b1 = [[l]]ρ ∧ bn = [[h]]ρ}

if m.ns = b1p1b2[?2]...bn[?n]

, {(ρ, l, h,M,N) ∈
n−1

+M
i=k+1

γ∗
M

(bipibi+1[?i+1])ρ |

∃bk+1,bn : bk+1 ∈ γB(bk+1), bn ∈ γB(bn) ∧
[[l]]ρ < bk+1 ∧ bn = [[h]]ρ}

if m.ns = bk+1pk+1bk+2[?k+2]...bn[?n]

, ∅ otherwise.
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Finally, the concretization function of a split segmen-

tation abstract predicate m is as follows:

γM(m)ρ , {(ρ, l, h,M,N) ∈ γ?
M

(m.s)ρ+M γ?
M

(m.ns)ρ |
∃b1,bn : b1 ∈ γB(b1), bn ∈ γB(bn) ∧

b1 = [[l]]ρ ∧ bn = [[h]]ρ}
Where +M returns all the possible concatenations

between a concrete array value taken from γ?
M

(m.s), and

a concrete array value taken from γ?
M

(m.ns).

6.1.1 Galois Connection

Let us show that (αM, γM) is a Galois connection.

Definition 5 (invalid segment) Given a generic seg-

ment bpb'[?], it is considered invalid if its segment ab-

stract predicate p is equal to ⊥C and its upper bound b'

is not followed by a question mark.

Theorem 1 Let the abstraction function αM be defined

by αM = λY. uM {m : γM(m) ⊆ Y}. Then,

〈P(M),⊆M〉 −−−−→←−−−−
αM

γM 〈M,6M〉

Proof By Theorem 1.1 in [9], we only need to prove that

γM is a complete meet morphism. Formally, we have to

prove that

γM

(
⊔M

m∈X

m

)
=
⋂

M
m∈X

γM(m)

where X denotes a set of abstract elements.
By definition of uM we can have the two following

cases:

1. For compatible abstract elements in X whose meet

does not result in an invalid abstract element, then

we have the following inference chain:

γM

(

⊔M
m∈X

m

)
by definition of uM

= γM(m')

by definition of γM

= {(ρ, l, h,MN) ∈ γ?
M

(m'.s)ρ+M γ?
M

(m'.ns)ρ |
∃b1,bn : b1 ∈ γB(b1), bn ∈ γB(bn) ∧

b1 = [[l]]ρ ∧ bn = [[h]]ρ}

by Definition 5

=
⋂

M
m∈X

{(ρ, l, h,C,N) ∈ γ?
M

(m.s)ρ+M γ?
M

(m.ns)ρ |

∃b1,bn : b1 ∈ γB(b1), bn ∈ γB(bn) ∧
b1 = [[l]]ρ ∧ bn = [[h]]ρ}

by definition of γM

=
⋂

M
m∈X

γM(m)

2. Otherwise, γM

(

⊔M
m∈X

m

)
= γM(⊥M) = ∅.

Then,
⋂

M
m∈X

γM(m) = ∅.

In the implementation we will make use of two func-

tions lift and lower, that relate single strings to their

abstraction in M-String.

Definition 6 (lift operation) Let s be a character array.

Given its concrete value µ(s) and its abstract value

αM(µ(s)) in M-String, we define the lift operation of s

as follows:

lift(s) = αM(µ(s)).

Definition 7 (lower operation) Let s be a character

array and let s denote lift(s) (cf. Definition 6). Given

the concrete value of s, i.e., µ(s), its abstract value

αM(µ(s)) and the concretization function on M-String
γM, we define the lower operation of s as follows:

lower(s) = γM(αM(µ(s))).

6.2 Abstract Semantics

The abstract semantics of the operators introduced in

5.3 is formalized below.

We refer to embM as the embedding function between

split segmentations. Precisely,

embM(m1, n1, e1,m2, n2, e2)

embeds the segment abstract predicates which occur

from n2 to e2 (included) in m2 into m1 from n1 to e1
where n1, e1 ∈ [`m1

, um1
), n2, e2 ∈ [`m2

, um2
) (`m and

um respectively denote the lower and the upper bound

of m) and m1 is modified accordingly. Moreover, e1 cor-

responds to n1 +B (e2 −B n2) and question marks, if

present, are left unchanged. Notice that, in the case in

which the upper bound of the string of interest segmen-

tation abstraction is considered as a starting or ending

point for the embedding, the is null segment abstract

predicate is embedded too.

We define the minimum length of a split segmenta-

tion abstract predicate m, i.e., min`enm. Precisely, if

m.ns is different from the emptyset and its upper bound

(um.ns) is followed by a question mark then min`enm
corresponds to the difference between bk and the lower

bound of m (`m), with bk the greatest segment bound

in m.ns not followed by a question mark. On the other

hand, if um.ns is not followed by a question mark then

min`enm is the difference between the upper bound of

m (um) and `m (here um and um.ns coincide). In the

case in which m.ns is equal to the emptyset then if m.s
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approximates null strings of interest then min`enm is

equal to 1, the difference between the upper bound of

m.s (um.s) plus 1 and the lower bound of m.s (`m.s)

otherwise.

6.2.1 Abstract Array Access

The semantics operator CM is the abstract counter-

parts of C. In particular, accessj(m) returns, if j is

valid for m (i.e., there exist a segment bounds interval

[bi[?
i], bi+1[?i+1]) in m to which j belongs), the segment

abstract predicate pi if its upper bound is not question

marked, or the least upper bound tC between successive

abstract predicates whose upper bounds are question

marked; otherwise it returns >C. It is implied that, if j

is the upper bound of m.s (i.e., um.s) then the operator

returns a is null segment abstract predicate. Formally,

CM[[accessj]](m)

=



pi if ∃i : j ∈ [bi[?
i], bi+1)

k−1⊔
C

h=i

ph if ∃i : j ∈ [bi[?
i], bi+1?i+1) ∧

{bz?z}z∈[i+1,k) where bk is not

question marked or bk = um

>C otherwise

6.2.2 Abstract String Concatenation

The semantics operator MM is the abstract counter-

part of M. When applied to strcat(m1,m2), it returns

m'

1 that is m1 into which m2.s has been embedded, if

both the input split segmentation approximate charac-

ter arrays which contain a well-formed string and the

condition on the size of the destination segmentation is

fulfilled; otherwise it returns >M. Formally,

MM[[strcat]](m1,m2)

=


m'

1 if m1.s 6= ∅ 6= m2.s ∧
size.condition is true

>M otherwise

where m'

1 is given by embM(m1, n1, e1,m2, n2, e2) such
that,

n1 = um1.s and e1 = um1.s +B (um2.s −B `m2.s)

n2 = `m2.s and e2 = um2.s

and size.condition is true if

min`enm1
>B (`enm1.s +B `enm2.s +B 1)

where `enm1.s (resp. `enm2.s) corresponds to the

difference between the upper bound and the lower bound

of m1.s (resp. m2.s).

6.2.3 Abstract String Character

The semantics operator MM, when applied to strchrc
(m), returns a split segmentation abstract predicate s

with left hand side parameter equal to the suffix seg-

mentation of the input m.s from the first segment to

which c occurs and right hand side equal to the empty-

set if m approximates character arrays which contain a

well-formed string and the abstract character c occurs
in m.s. Otherwise, if m approximates character arrays

which contain a well-defined string of interest and the

abstract character c does not occur in m.s, it returns

⊥M; otherwise it returns >M. Formally,

MM[[strchrc]](m)

=


s if m.s 6= ∅ ∧ c occurs in m.s

⊥M if m.s 6= ∅ ∧ c does not occur in m.s

>M otherwise

6.2.4 Abstract String Compare

The semantics PM is the abstract counterpart of P. In

particular, strcmp(m1,m2) returns a value n denoting

the lexicographic order between m1.s and m2.s if both

the input split segmentations approximate character

arrays which contain a well-formed string; otherwise it

returns >C.

Notice that if n is negative, this means that the

strings of interest approximated by m1 precede those

represented by m2 in lexicographic order. Conversely,

if n is positive, this means that the strings of interest

approximated by m1 follows those represented by m2 in

lexicographic order, and if n is equal to zero means that

the strings of interest approximated by m1 and m2 are

lexicographically equal. Formally,

ZM[[strcmp]](m1,m2)

=

n if m1.s 6= ∅ 6= m2.s

>C otherwise

In particular, n is obtained as defined in Algorithm 2.

6.2.5 Abstract String Copy

The semantics MM, when applied to strcpy(m1,m2),

behaves similarly to the abstract string concatenation

operator above. Formally,

MM[[strcpy]](m1,m2)

=


m'

1 if m1.s 6= ∅ 6= m2.s ∧
size.condition is true

>M otherwise



Abstracting Strings for Model Checking of C Programs 13

Algorithm 2 Computing n

1: n' = ⊥C

2: j1 = `m1.s

3: j2 = `m2.s

4: for j1 ∈ [`m1.s, um1.s] ∧ j2 ∈ [`m2.s, um2.s] do

5: n = (accessj1(m1)−C accessj2(m2)) tC n'

6: if n 6= 0∧j1 ∈ [b
1
i [?i], b

1
i+1)∧j2 ∈ [b

2
i [?i], b

2
i+1) then

7: return n

8: if n = 0∧j1 ∈ [b
1
i [?i], b

1
i+1)∧j2 ∈ [b

2
i [?i], b

2
i+1) then

9: j1 = j1 +B 1

10: j2 = j2 +B 1

11: if j1 ∈ [b
1
i [?i], b

1
i+1?i+1) ∨ j2 ∈ [b

2
i [?i], b

2
i+1?i+1)

then

12: j1 = j1 +B 1

13: j2 = j2 +B 1

14: n' = n

15: return n

where m'

1 is given by embM(m1, n1, e1,m2, n2, e2) such

that,

n1 = `m1.s and e1 = `m1.s +B (um2.s −B `m2.s)

n2 = `m2.s and e2 = um2.s

and size.condition is true if

min`enm1 >B `enm2.s +B 1

6.2.6 Abstract String Length

The semantics ZM is the abstract counterpart of Z. In

particular, strlen returns, a value n if m approximates

character arrays which contain a well-formed string;

otherwise it returns >B. Formally,

ZM[[strlen]](m)

=

n if m.s 6= ∅

>B otherwise.

In particular, n is obtained as follows:

1) b−B b if m.s = b

2)
⊔

B
{tB[bi[?

i], bi+1[?i+1])− `m.s |
is null(pi) = maybe} tB um.s −B `m.s

if m.s 6= b 6= ∅

6.2.7 Abstract Array Update

The semantics MM, when applied to updatej,c(m), re-

turns m' that is m where the segment abstract predicate

occurring in the segment to which j belongs has been

substituted with c if j is valid for m; otherwise it re-

turns >M.

Formally,

MM[[updatej,c]](m)

=

m' if ∃i : i ∈ m ∧ j ∈ [bi[?
i], bi+1[?i+1])

>M otherwise

In particular, m' is obtained as follows:

1) m[pi/c] if ∃i : j ∈ [bi[?
i], bi+1) ∧ bi−1 −B bi > 1

2) m[pi/(c tC pi)] if ∃i : j ∈ [bi[?
i], bi+1) ∧
bi−1 −B bi > 1

3) m[pi/c tC pi, pi+1/c tC pi+1, ..., pk/c tC pk] if

∃i : j ∈ [bi[?
i], bi+1?i+1) ∧ {bz?z}z∈[i+1,k) where

bk is not question marked or bk = um

Notice that we could have also defined the updatej,c
by splitting the segment (when needed) where substitu-

tion applies.

6.3 Soundness

Theorem 2 CM, MM, PM and ZM are sound over-

approximations of C, M, P and Z respectively. Formally,

γC(CM[[stm]](m)) ⊇ {C[[stm]](m) : m ∈ γM(m)}

γM(MM[[stm]](m)) ⊇ {M[[stm]](m) : m ∈ γM(m)}

γB(PM[[stm]](m)) ⊇ {P[[stm]](m) : m ∈ γM(m)}

γB(ZM[[stm]](m)) ⊇ {Z[[stm]](m) : m ∈ γM(m)}

Proof We prove the soundness separately for each oper-

ator.

• Consider the unary operator accessj and let m be

a split segmentation abstract predicate. We have to

prove that

γC(CM[[accessj ]](m)) ⊇ {C[[accessj ]](m) : m ∈ γM(m)}

accessj of m returns the character array value c

that occurs at position j, if j is a valid index for

m, >C otherwise, by definition of C. Then c belongs

to γC(CM[[accessj ]](m)) because accessj of m, by

definition of CM, is equal to:

i) the segment abstract predicate pi if j is valid for

m and j ∈ [bi[?], bi+1)

ii) the least upper bound between subsequent seg-

ment abstract predicate whose upper bounds

are all question marked up to the first segment

upper bound which is not followed by a ques-

tion mark or which corresponds to the upper
bound of the segmentation um if j is valid for m,

j ∈ [bi[?], bi+1?i+1)
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iii) >C otherwise.

Notice that αB(j) = j.

• Consider the binary operator strcat and let m1 and

m2 be two split segmentation abstract predicates.

We have to prove that

γM(MM[[strcat]](m1,m2))⊇{M[[strcat]](m1, m2) :

m1∈γM(m1) ∧m2∈γM(m2)}

strcat of m1 and m2 returns m'

1 where the first null-

terminating memory block of m2 (including the null

terminator), i.e., its string of interest, is embedded

into m1 starting from the index to which occurs

the first null character in m1 if both m1 and m2

contain a well-formed string and the size condition

on the destination character array value is fulfilled,
>M otherwise, by definition of M. Then, m'

1 belongs

to γM(MM[[strcat]](m1,m2)) because strcat of m1

and m2, by definition of MM, is equal to:

i) m'

1 that is m1 into which m2.s has been embed-

ded starting from um1.s if both m1 and m2 ap-

proximate character arrays which contain a well-

formed string and the size condition on the desti-

nation segmentation abstract predicate is fulfilled

ii) >M otherwise.

• Consider the unary operator strchrc, and let m be

a split segmentation abstract predicate. We have to

prove that

γM(MM[[strchrc]](m)) ⊇ {M[[strchrc]](m) :

m ∈ γM(m)}

strchrc of m returns s that corresponds to the suffix

of the string of interest of m starting from the in-

dex to which appears the first occurrence of c if

m contains a well-formed string and c occurs in m,

the emptyset (i.e., ⊥M) if m contains a well-formed

string and c does not occur in m, >M otherwise, by

definition of M. Then s belongs to γM(MM[[strchrc]]

(m)) because strchrc of m, by definition of MM, is

equal to:

i) s that is the split segmentation abstract pred-

icate having s.s equal to the sub-segmentation

of m.s starting from the first segment to which

c occurs and s.ns equal to the empty set if m

approximates character arrays which contain a
well-formed string and c appears in m

ii) ⊥M if m approximates character arrays which

contain a well-formed string and c does not ap-

pear in m

iii) >M otherwise.

Notice that αC(c) = c

• Consider the binary operator strcmp and let m1 and

m2 be two split segmentation abstract predicates.

We have to prove that

γC(PM[[strcmp]](m1,m2)) ⊇ {P[[strcmp]](m1,m2) :

m1 ∈ γM(m1) ∧ m2 ∈ γM(m2)}.

strcmp of m1 and m2 returns an integer value n,

resulting from the difference between correspond-

ing character array elements, denoting the lexico-

graphic order between the strings of interest of

m1 and m2 if both contain a well-formed string,

>Z otherwise, by definition of P. Then n belongs

to γC(PM[[strcmp]](m1,m2)) because strcmp of m1

and m2, by definition of PM, is equal to:

i) n that is the difference between corresponding

segment abstract predicates, denoting the lexi-

cographic order between m1.s and m2.s if both

approximate character arrays which contain a

well-formed string where >C does not occur

ii) >C otherwise.

• Consider the binary operator strcpy and let m1 and

m2 be two split segmentation abstract predicates.

We have to prove that

γM(MM[[strcpy]](m1,m2))⊇{M[[strcpy]](m1, m2) :

m1∈γM(m1) ∧m2∈γM(m2)}

strcpy of m1 and m2 returns m'

1 where the first null-

terminating memory block of m2 (including the null

terminator), i.e., its string of interest, is embedded

into m1 starting from the beginning of m1 if both

m1 and m2 contain a well-formed string and the size

condition on the destination character array value
is fulfilled, >M otherwise, by definition of M. Then,

m'

1 belongs to γM(MM[[strcpy]](m1,m2)) because

strcpy of m1 and m2, by definition of MM, is equal

to:

i) m'

1 that is m1 into which m2.s has been embed-

ded starting from `m1.s if both m1 and m2 ap-

proximate character arrays which contain a well-

formed string and the size condition on the desti-

nation segmentation abstract predicate is fulfilled

ii) >M otherwise.

• Consider the unary operator strlen and let m be

a split segmentation abstract predicate. We have to
prove that

γB(ZM[[strlen]](m))⊇{Z[[strlen]](m) :

m∈γM(m)}.

strlen ofm returns an integer value n which denotes

the length of the sequence of character before the first

null one in m if m contains a well-formed string,
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>Z otherwise, by definition of Z. Then n belongs

to γB(ZM[[strlen]](m)) because strlen of (m), by

definition of ZM is equal to:

i) the difference between the lower bound of m.s

and itself if m approximates character arrays

which contain a null string of interest

ii) the least upper bound between successive seg-

ment bounds into which a maybe null abstract

predicate occurs minus the lower bound of m.s

and the difference between the upper bound of

m.s and its lower bound if m approximates char-
acter arrays which contain a well-defined string

of interest

iii) >B otherwise.

• Consider the unary operator updatej,c and let m be

a split segmentation abstract predicate. We have to

prove that

γM(MM[[updatej,c]](m)) ⊇ {M[[updatej,c]](m) :

m ∈ γM(m)}

updatej,c ofm returnsm' that ism where the charac-

ter at position j has been substituted by the characterc

if j is a valid index for m, >M otherwise, by defini-

tion of M. Then m' belongs to γM(MM[[upda

tej,c]](m)) because updatej,c of m, by definition of

MM is equal to:

i) m' that is m where,

- the segment abstract predicate pi has been

substituted with c if j is valid for m, j ∈
[bi[?

i], bi+1) and bi+1 −B bi = 1

- pi has been joined with c if j is valid for m,

j ∈ [bi[?
i], bi+1) and bi+1 −B bi > 1

- pi and the following segment abstract predi-

cates have been joined with c if j is valid for

m, j ∈ [bi[?
i], bi+1?i+1) and {bz?z}z∈[i+1,k)

where bk is not question marked or bk = um

ii) >M otherwise.

Notice that αB(j) = j and αC(c) = c.

7 Program abstraction

Adapting M-String to the analysis of real-world C pro-

grams requires, first of all, a procedure that identifies

string operations automatically. A subset of such oper-

ations then needs to be performed using abstract op-

erations, carried out on a suitable abstract represen-

tation. The technique that captures this approach is

known as abstract interpretation. A typical implemen-

tation is based on an interpreter in the programming

language sense: it executes the program by directly per-

forming the operations written down in the source code.

However, instead of using concrete values and concrete

operations on those values, part (or the entirety) of

the computation is performed in an abstract domain,

which over-approximates the semantics of the concrete

program.

Since in this paper, we focus on string abstraction,

we would like to be able to perform the remainder of

the program (i.e., the portions that do not work with

strings) concretely. In fact, we only want to abstract

some of the strings and string operations in the program,

since the domain at hand is an approximation: in cases,

where the program works with strings that exhibit min-

imal variation, e.g., string literals, using the M-String

representation would not offer any benefit, and could

actually hurt performance or introduce spurious coun-

terexamples.

These considerations lead us to conclude that it

would be beneficial to re-use, or rather re-purpose, ex-

isting tools which work with explicit programs to im-

plement abstract interpretation in a modular fashion. A

design in this style (compilation-based abstract inter-
pretation) was proposed and implemented in [22].

However, as presented, the approach was limited to

abstracting scalar values. In this paper, we extend this

approach to work with strings and other domains that

represent more complex objects.

In the remainder of this section, we will first summa-

rize the general approach to abstraction as a program

transformation. In Section 7.3, we explore the implica-

tions of aggregate (as opposed to scalar) domains within

this framework. Sections 7.4 and 7.5 then go on to dis-

cuss the semantic (run-time) aspects of the abstraction

and which operations we consider as primitives of the

abstraction.

7.1 Compilation-based approach

To perform abstraction, instead of (re-)interpreting in-

structions abstractly, we transform abstract instructions

into equivalent explicit code, which implements the ab-

stract computation. The transformation occurs before

model checking (or other dynamical analysis), during

the compilation process.

The transformed program can be further analyzed

or processed without special knowledge of the abstract

domains in use, because those are now encoded directly

in the program. Comparison of this compilation-based

approach and the approach of more traditional abstract

interpreters (an interpretation-based approach) is shown

in Figure 1.
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Fig. 1: The figure depicts a comparison of interpretation/compilation-based approaches. In interpretation-based

approach, entire abstract interpretation is performed during runtime. A virtual machine (VM) interprets bitcode

operations abstractly and maintain an abstract state. Consequently, it generates an abstract state-space for
a model-checking algorithm (MC). On the other hand, compilation-based approach instruments abstract operations

into the compiled program and provides their implementation as a library. A virtual machine then executes the

instrumented program as regular bitcode.

In compilation-based approach, we consider two levels

of abstraction:

1. static, concerning the syntax and the type system,

2. dynamic, or semantic, concerning execution and

values.

LART performs syntactic (static) abstraction on LLVM
bitcode [21]. The goal of syntactic abstraction is to
replace some of the LLVM instructions in the program

with their abstract counterparts. We illustrate syntactic

abstraction in Figure 2.

7.2 Syntactic abstraction

During syntactic abstraction, LART performs a data
flow analysis, starting from annotated abstract values

(abstract) as the roots. The result of this analysis is

the set of all operations that may come into contact with

an abstract value. These are then substituted by their

abstract counterparts (a strcat, a strlen). Abstract

counterparts implement manipulations with M-String

values described in Section 6.

An abstract instruction takes abstract values as its

inputs and produces an abstract value as its result.

The specific meaning of those abstract instructions and

abstract values then defines the semantic abstraction.

To formulate syntactic abstraction unambiguously,

we take advantage of the static type system of LLVM. By

assigning types to program variables, we can maintain

Concrete program:

a:str ← abstract ()

b:str ← string ()

c:str ← strcat(a, b)

l:int ← strlen(c)

Transformed program:

a:a_str ← a_string ()

b:str ← string ()

c:a_str ← a_strcat(a, lift(b))

l:a_int ← a_strlen(c)

Fig. 2: Syntactic abstraction.

a precise boundary between concrete and abstract values

in our program.

We recognize a set of concrete scalar types S. We give

a map Γ that inductively defines finite (non-recursive)

algebraic types over the set of given scalars. To be

specific, the set of all types Γ (T ) derived from a set of

scalars T ⊆ V is defined as follows:

1. T ⊆ Γ (T ), meaning each scalar type is included in

Γ (T ),

2. if t1, . . . , tn ∈ Γ (T ) then also the product type is in

Γ (T ): (t1, . . . , tn) ∈ Γ (T ), n ∈ N,

3. if t1, . . . , tn ∈ Γ (T ) then also disjoint union is in

Γ (T ): t1 | t2 | · · · | tn ∈ Γ (T ), n ∈ N,

4. if t ∈ Γ (T ) then t∗ ∈ Γ (T ), where t∗ denotes pointer

type.
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In syntactic abstraction, we extend the concrete set

of types by abstract types. From these, we generate

admissible types using Γ . Depending on the level of

abstraction, we define a different set of basic abstract

types. In the case of scalar abstraction, a set of basic

abstract types contains abstract scalar types S. Cor-

respondence between abstract and concrete scalars is

given by a bijective map Λ : S → S. Finally, each value,

which exists in the abstracted program, has an assigned

type of Γ (S ∪ S). In particular, this means that the ab-

straction works with mixed types – products and unions
with both concrete and abstract fields. Likewise, it is

possible to form pointers to both abstract values and to

mixed aggregates.

7.3 Aggregate domains

Scalars in a program are simple values which cannot be

further decomposed into meaningful constituent parts.

A typical example would be an integer, or a pointer. How-
ever, programs typically also work with more complex

data, that we can think of as compositions – aggregates

– of multiple scalar values. Depending on the nature of

such aggregates, we can classify them as arrays, which

contain a variable number of items which all belong to

a single type, records (structures), which contain a fixed
number of items in a fixed layout, but each of these

can be of a different type. The items in such aggregates

can be (and often are) scalars, but more complicated

aggregates are also possible: arrays of records, records

which in turn contain other records, and so on.

In contrast to scalar domains, which deal with scalar

values, an aggregate domain represents composite data,

in the spirit of the above definition. An abstract aggre-

gate domain approximates (concrete) aggregate values

by keeping track of certain properties of the aggregate,

for instance the length of an array, or a set of scalars

that appear in the array. In the case of M-String, the in-

formation it tracks is a segmentation, where segments

are represented using their bounds and a single value

abstracting their content.

Aggregate domains could be equipped with quite ar-

bitrary operations, though there are two that stand out,

because they are in some sense universal, and those are

byte-wise access and modification (update) of the con-

tent of the aggregate. The universality of those oper-

ations stems from the fact that in a low-level repre-

sentation of a program, all operations with aggregate

values take this form. In LLVM, it is possible (though

not guaranteed), that access to the aggregate is encoded

at a slightly higher level: as extraction and modification

of entire scalars (as opposed to individual bytes). For

M-String, though, this distinction is not important be-

cause the scalars stored in C strings are individual bytes.

It should be also noted that the access and update

form the interface between scalars and aggregates (even

in the case of byte-oriented access, since bytes are also

scalars). We refer the reader to the Section 5.3.1 for ab-

stract semantics of access, respectively to the Section

5.3.7 for the abstract semantics of update.

Therefore, the types of those two operations contain

a single aggregate and (at least) a single scalar domain.

Some (or all) of those domains may be abstract domains.

Syntactic abstraction has to handle aggregate do-

mains differently from scalar domains. In LLVM, aggre-

gate values are usually represented using pointers of a

specific (aggregate) type. For this reason, aggregate ab-

straction starts from the types that represent its objects.

In the case of arrays, those are concrete pointers into

those arrays: let us call them P ∗, where P ⊆ Γ (S). We

use the set of abstract pointers P
∗

to represent the types

of abstract values in an aggregate domain. Thus the set

of admissible types in the abstract program is generated

by Γ (S∪P ∗). Like in scalar domains, we define a natural
correspondence between pointers to concrete values P ∗

as a bijective map Λ : P ∗ → P
∗
.

Please note that pointers in general contain two

pieces of information: they determine the object and an

offset into that object. In explicit programs, this distinc-

tion is not very important, since those two parts are rep-

resented uniformly and often cannot be distinguished at

all. The distinction, however, becomes important when

we deal with abstract aggregate values. In this case,

the object portion of the pointer is concrete, since it

determines a single specific abstract object. However,

the offset may or may not be concrete – depending on

the specific abstract aggregate domain, it may be more

advantageous to represent the offset abstractly. In either

case, however, all memory access through such a pointer

needs to be treated as an abstract access or update

operation.

In LLVM, there are two basic memory access opera-

tions – load and store, which correspond to the access

and update operations. Rather importantly, memory

access is always explicit – memory is never directly used

in a computation. We use this fact in the design of ag-

gregate abstraction, where we can assume that access

to the content of an aggregate will always go through

a pointer associated with the abstract object.

7.4 Semantic abstraction

Where syntactic abstraction was concerned with the syn-

tax of operations, their types and the types of values
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and variables, semantic abstraction is concerned with

the runtime values that appear during the computation

performed by a program. While syntactic abstraction

introduced the maps Λ and Λ−1 to transfer between

concrete and abstract types, semantic abstraction intro-

duces lift and lower (cf. Definition 6 and Definition 7):

operations (instructions) which convert between con-

crete and abstract values. They represent a realization

of the abstraction (α) and concretization (γ) functions.

The lift operation, as shown in Figure 2, enables

abstraction of a set of concrete values by a single over-

approximating abstract value. In comparison to Λ, which

was a purely syntactic construct, lift and lower accom-

plish actual conversion of values between domains during

program runtime. From the point of view of abstration,

lift represents a realization of the abstraction function of

a domain (αM in the case of M-String). Likewise, lower

is an executable form of the concretization function

γM. During program execution, lowering an abstract

value into multiple concrete values can be seen as non-

deterministic branching in the program (and the lower

operator is indeed based on a non-deterministic choice4

operator).

While lift and lower form a boundary between con-

crete and abstract scalar computation, the access and

update operations of an aggregate domain form a bound-

ary between scalar and aggregate domains. We kindly

refer to [22], where a reader may find how LART trans-

forms an abstract program into an executable form.

7.5 Abstract operations

After syntactic abstraction, the program temporarily

contains abstract instructions. Abstract instructions

take abstract values as operands and give back abstract

values as their results. However, after transformation, we

require that the resulting program is semantically valid

LLVM bitcode. Hence, it is crucial that each abstract
instruction can be realized as a suitable sequence of

concrete instructions. This makes it possible to obtain

an abstract program that does not actually contain

any abstract instructions and execute it using standard

(concrete, explicit) methods.

In detail, syntactic abstraction replaces concrete in-

structions with their abstract counterparts: an instruc-

tion with type (t1, . . . , tn) → tr is substituted by an

abstract instruction of type (Λ(t1), . . . , Λ(tn))→ Λ(tr).

4In a model checker, the non-deterministic choice would
be typically implemented as branching in the state space (and
the consequences of all possible outcomes would be explored).
In a testing context, however, the choice might implemented
as random.

Moreover, lift and lower are inserted as needed. The im-

plementation is free to decide which instructions to

abstract and where to insert value lifting and lowering,

so long as it obeys type constraints.

Additionally, in string abstraction, we also want

to abstract function calls such as strcat, strcpy etc.

From the perspective of abstraction, we treat these

functions as single operations that take abstract values

and produce results. Therefore, we can process them in

the same way as instructions. For example, by transform-

ing strcat of type (m, m) → m we obtain a strcat

of type (Λ(m), Λ(m))→ Λ(m) where m is the concrete

value of a character array m. Afterwards, all abstract

operations are realized using concrete subroutines, for

details see [22].

We could have also transformed standard library

functions (strcat, strcmp, etc.) instruction by instruc-

tion using only abstract access and update of a content,

but in this way we would lose a certain degree of preci-

sion in the abstraction, the exact amount depending on

the operation.

8 Instantiating M-String

M-String, as a content domain, enables a parametriza-

tion of string abstraction. To be specific, it supports

the parametrization of string segmentation representa-

tion in which we can substitute different domains of
bounds and characters. As a representation of string

values, we can use a scalar domain equipped with the cor-

rect operations, and the same holds for bounds of seg-

ments as described in Section 6.

A particular M-String instance can be automatically
derived from a parametric description, given well-defined

abstract domains C for characters and B to represent

segment bounds. M-String also requires that both C and

B support certain operations that appear in the generic

implementation of the abstract operations described

in Section 6. These are mainly basic arithmetic and

relational operators.

8.1 Symbolic scalar values

In program verification, it is common practice to rep-

resent certain values symbolically (for instance inputs

from the environment). This type of representation en-

ables a verification procedure to consider all the possible

values with a reasonably small overhead. In DIVINE, sym-

bolic computation is implemented using abstraction of

the same type as described here: computations on scalar

values are lifted into the term domain, which simply

keeps track of values using terms (expressions) in form
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of abstract syntax trees. Those trees contain atoms (un-

constrained values) and operators of the bitvector logic.

The term domain additionally keeps track of any con-

straints derived from the control flow of the program (a

path condition). A more detailed description is presented

in [22].

Paired with a constraint solver for the requisite the-

ory,5 the term domain coincides with symbolic compu-

tation. The solver makes it possible to detect computa-

tions that have reached the bottom of the term domain

(those are the infeasible paths through the program) and

also to check for equality or subsumption of program

states. With those provisions, the bitvector theory is

completely precise (i.e., it is not an approximation, but

rather models the program state faithfully).

8.2 Concrete characters, symbolic bounds

For evaluation purposes, we have instantiated the M-

String domain by setting C, the domain of the individual

characters, to be the concrete domain (i.e., characters

are represented by themselves) and B, the domain of

segment bounds, to be symbolic 64b integers. The main

motivation for this instantiation is a balance between

simplicity on one hand (both the domains we used for

parameters were already available in the tools we used)

and the ability to describe strings with undetermined

length and structure.

At the implementation level (as explained in more

detail in the following section), the domain continues

to be parametric: the specific domains we picked could

be easily swapped for other domains (an immediate

candidate would be using both symbolic characters and

symbolic bounds). Compared to the theoretical descrip-

tion of M-String, the implementation uses a slightly

simplified representation using a pair of arrays (cf. Fig-

ure 3), where the specific type of characters and bounds

is given by the parameter domains C and B respectively.

M-String, when instantiated like this, is particularly

suitable for representing strings with runs of a single

character of variable length, i.e., the strings of the form

akblcm... where relationships between k, l,m, ... can be

specified using standard arithmetic and relational op-

erators and each of a, b, c is a specific letter. This in

turn allows M-String to be used for checking program
behaviour on broad classes of input strings described

this way. A more detailed account of this approach can

be found in Section 9.

5For scalars in C programs, we use the bitvector theory.

a . . . a c . . . c \0 a . . . \0 . . .

segment

b1 b2 b3 b4 b5 b6

Characters:

a c \0 a \0

Bounds:

b1 b2 b3 b4 b5 b6

Fig. 3: M-String value with symbolic bounds, where
string of interest is from b1 to b3.

8.3 Symbolic characters, symbolic bounds

In the benchmarks where the computation with M-

String values encountered abstract scalars from the pro-

gram represented in the term domain, we have instan-
tiated the M-String domain by setting the domain of

characters C to be the term domain, which keeps track

of symbolic 8b integers (characters in C language). In

this way, we do not need to lower abstract characters

to the concrete domain used in the previous instanti-

ation. However, we pay the price for more expensive

computation with symbolic characters.

8.4 Implementation

We have implemented the abstract semantics of opera-

tions in the M-String domain as a C++ library, in a form

that allows programs to be automatically lifted into this

domain by LART and later model-checked with DIVINE.

An abstract domain definition in LART consists of a C++

class that describes both the representation (in terms
of data) and the operations (in terms of code) of the

abstract domain.

In the case of M-String domain, this class contains 2

attributes: an array of bounds and an array of characters,

as outlined in Section 8.2 and depicted in Figure 3.
The class has two type parameters: the domain to use

for representing segment bounds and the domain to

represent individual characters (i.e. the content of those

segments). A specific instantiation is then automatically

derived by the C++ compiler from the classes which

represent the type parameters and the parametric class

which represents M-String values.

The abstract domain is equipped with a set of essen-

tial operations, which appear in all programs that work

with strings: these are lift, update and access. All

other operations which involve strings can be, in prin-

ciple, derived automatically using the same procedure

that is applied to user programs. However, abstracting

only access and update causes either a loss of preci-

sion or a blowup in complexity. For this reason, we also
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include hand-crafted implementations of the following

abstract operations: strcmp, strcpy, strcat, strchr,

and strlen. These are all based on the abstract se-

mantics of the respective operations as described in

Section 6.

Since C strings are stored, in fact, as shared, mutable

character arrays, the implementation of the M-String

domain needs to reflect the sharing semantics of such

arrays. If multiple pointers exist into the same abstract

string, modifications through one such pointer must be

also visible when the string is accessed through another

pointer. Moreover, the pointers do not have to be equal:

they may point to different suffixes of the same string.

Therefore, the representation of pointers to abstract

strings must treat the object and the offset components

separately (see also Section 7.3), and the representa-
tion of the offset component must be compatible with

the bound domain B.

A more complete description of the implementation
of LART and DIVINE, their source code, and technical

details of the M-String domain can be found online.6

9 Experimental evaluation

For evaluation purposes, we have picked four scenarios.

In first of those, we show that the provided implemen-

tation of basic string functions is more efficient than

lifting them automatically based on the access and

update operations. In the second scenario, we analyse

various implementations of the same string functions

by lifting them automatically and checking that their

outputs match the ones we expect based on the concrete

semantics of those operations – in this case, the inputs

are provided in the form of specific abstract (M-String)

values. In the third scenario, we evaluate M-String in-
stantiation with symbolic characters on the set of bench-

marks from real software that contain buffer-overflow

errors. Here we show, that M-String can efficiently de-

tect real-world bugs as well as to prove that program

does not contain them after they are fixed. In the last

scenario, we have picked a few real-world programs to

demonstrate that M-String can be successfully used in

analysis of moderately complex C code. To this end,

we have chosen two context-free grammars and used

them to generate C parsers using the bison and flex

tools, again providing abstract strings as inputs to the

generated parsers. All experiments were performed with

an identical set of resource constraints: 1 hour of CPU

time, 80 GB of RAM and 4 CPU cores.7

6https://divine.fi.muni.cz/2020/mstring
7The processor used to run the benchmarks was AMD

EPYC 7371 clocked at 2.60GHz.

Abstract operations: The first set of benchmarks covers

resource usage measurements of M-String operations.

Results are presented in Table 2. We run each operation

separately on two different types of M-String inputs

parametrized by length l:

– Word w is a string of the form:

w = ci11 · c
i2
2 · . . . · c

il
l ,

l∑
k=1

ik ≤ l

where cx is an arbitrary character from domain C.

– Sequence w is a string of the form:

w = ci, i ≤ l,

where c is an arbitrary character from domain C.

We have measured how much time we spend in the

abstract operations which are part of the M-String do-

main (see Table 2) and compare them to the same

programs, but with the functions abstracted automati-

cally, using only the M-String definitions of access and

update (see Table 3).

One of the results is that the size of the state space
does not depend on the length of the string when us-

ing the operations from M-String. This is because the

number of segments does not change and the operations

perform the same amount of work. In comparison, anal-

ysis of automatically lifted implementations of the same

functions8 does not terminate in a 1-hour time limit for
strings of length 64 and more. This is caused by the fact

that the concrete implementations need to iterate over

each character individually causing exponential blowup

of possible character combinations, while the M-String

implementation directly works with segments.

Sequence

8 64 1024

time(s) states time(s) states time(s) states

strcmp 1.24 197 260 1597 T –
strcpy 0.7 122 61.5 962 T –
strcat 15.8 1102 T – T –
strchr 0.04 16 0.05 16 0.05 16
strlen 0.19 46 9.57 326 T –

Table 3: Benchmark of of standard library functions

abstracted using only the M-String definitions of access

and updatev operations. Verification for Word strings

times out in most of the instances.

C standard library: The second scenario deals with cor-

rectness of various concrete implementations of the set

of standard library functions. Namely, we used three

8The implementations were taken from PDClib, a public-
domain libc implementation.

https://divine.fi.muni.cz/2020/mstring/


Abstracting Strings for Model Checking of C Programs 21

Word Sequence

verification(s) verification(s)

states 8 64 1024 4096 LART(s) states 8 64 1024 4096 LART(s)

strcmp 3562 480 498 472 481 1.70 70 0.26 0.24 0.21 0.25 1.76
strcpy 368 9.8 9.1 9.3 9.4 1.70 48 0.20 0.20 0.21 0.20 1.71
strcat 7398 898 873 865 843 1.72 105 0.51 0.52 0.53 0.51 1.72
strchr 49 0.3 0.4 0.3 0.3 1.71 15 0.04 0.04 0.03 0.04 1.70
strlen 78 1.1 1.2 1.0 1.3 1.70 16 0.05 0.04 0.05 0.06 1.81

Table 2: Benchmarks of abstract operations were evaluated on two types of M-Strings (Word and Sequence) –

see Section 9 for description. The table depicts the number of states in the state space of the verified program,

verification time in seconds for the different length of inputs and an average time of a transformation (LART).

sources: PDClib, musl-libc and µCLibc. Results for

these libraries are very similar, hence we only present

results for PDClib library – data for the remaining two

are part of the supplementary material.

Sequence

4 8 16

time(s) states time(s) states time(s) states

strcmp 2.17 204 5.09 376 16.5 720
strcpy 0.83 183 2.49 347 9.14 675
strcat 8.56 751 113 2535 1940 9463
strchr 0.3 17 0.3 17 0.4 17
strlen 0.15 34 0.28 54 0.65 94

Word

4 8 16

time(s) states time(s) states time(s) states

strcmp 14.3 1005 105 2989 1350 9741
strcpy 5.15 515 57.4 1823 912 6935
strcat 468 5748 T – T –
strchr 0.08 22 0.08 22 0.08 22
strlen 0.66 91 4.13 259 68.8 883

Table 4: Verification results of functions from PDCLib

with timeout of 1 hour. For each type of input M-String

of a given length, we present duration of verification

and the size of the state-space.

In these benchmarks, we compare the results of the

abstract implementation with the result of the automat-

ically abstracted (originally concrete) implementation of

each function and check that they give identical results.

Results show that analysis of strings with multiple-

segments is more expensive. This is because segments

might disappear when they have zero length and two

segments are merged into one: the smt queries arising

from these events are hard to solve, because of the large

number of possible overlaps in the segment bounds.

The library implementations access and update the

string one character at a time, resulting in large smt

formulas – this causes the blowup in analysis time and

hence timeouts with longer strings.

Veriabs overflow benchmarks: In this scenario, we show

that the domain is capable of efficient overflow bug

finding. Veriabs benchmarks exhibit overflow errors and

fixed variants of real-world software. To soundly proof

correctness of these benchmarks, we instantiate M-string

with term domain also for characters. Hence we can

reason about arbitrary strings of a symbolic length.

However, as a drawback of this instantiation is that

whenever the length of the string bounds a loop, we

might have to unroll the loop infinitely in the analysis –

these cases timeouts in the correct benchmarks.

correct error found

benchs time(s) benchs time(s) timeout

apache 0 – 26 384.26 24
openser 43 234.13 45 105.93 6
wu-ftpd 8 35.78 14 2461.27 19

libgd 4 9.01 4 1.85 0
madwifi 5 0.51 5 0.55 0

gxine 1 0.53 1 0.25 0

Table 5: Veriabs overflow benchmarks depict a few cate-

gories of programs exhibiting an overflow error and their

fixed variants. The table shows the number of solved

benchmarks and accumulated time for each category.

Bison grammar: In the last scenario, we analyse two

parsers generated by bison. First is a parser for numer-

ical expressions which consist of binary operators and

numbers (see Table 6). The second example is a parser

for a simple programming language.

Like with the previous scenarios, inputs which con-

tain long sequences of the same character perform the

best, especially when contrasted with a similar task

performed on an input with alternating digits.
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Numeric expressions Grammar

10 20 35

time(s) states time(s) states time(s) states

add 40.2 416 319 3548 T –
ones 5.54 62 8.12 196 189 2186

alter 708 105 1582 11k T –

BP Grammar

10 100 1000

time(s) states time(s) states time(s) states

value 6.58 38 90.4 488 1100 4988
loop 1.53 23 4.88 23 33.3 23

wrong 7.34 82 67.7 892 311 8992

Table 6: Evaluation on parsers of mathematical expres-

sions (ME) and simple programs (BP). Inputs for ME

were of 3 forms: addition is a string with two numbers

with + between them, ones is a sequence of ones, and

alternation represent a number with multiple digits.

Inputs for BP were of the form: value constructs a con-

stant, while loop is a program with a single bounded

loop and wrong is a program with a syntax error.

10 Conclusion

We have presented a segmentation-based abstract do-

main for approximating C strings. The main novelty

of the domain lies in its focus on string buffers, which

consist of two parts: the string of interest itself, and

a tail of allocated and possibly initialized but unused

memory. This paradigm allows for precise modeling of

string functions from the standard C library, including

their often fragile handling of terminating zeroes and

buffer bounds. In principle, this allows the M-String do-

main to identify string manipulation errors with security

consequences, such as buffer overflows.

In addition to presenting the domain theoretically, we

have implemented the abstract semantics in executable

form (as C++ code) and combined them with a tool that

automatically lifts string-manipulating code in existing

C programs to the M-String domain. Since M-String is

a parametric domain – the domains for both segment

content and segment bounds can be freely chosen – we

have instantiated M-String (for evaluation purposes)

with both concrete and symbolic characters and with

symbolic (bitvector) bounds.
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