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Abstract. DIVINE is an explicit-state model checker based on the
LLVM framework with a focus on real-world C and C++ programs.
Verification in DIVINE covers a wide variety of aspects of these
languages like concurrency, memory safety, verification of programs with
exceptions as well as programs that interact with an operating system,
including file system and posix syscalls. Furthermore, these programs
usually interact with their environment and obtain nondeterministic
values. In DIVINE, we tackle data nondeterminism via symbolic
computation that is instrumented into the original program on the
level of LLVM bitcode. Using this approach, we limit modifications of
DIVINE’s internal interpreter which can remain purely explicit.
Up till now, DIVINE was able to instrument an abstraction of
scalar integers. This year we have enriched DIVINE’s abilities by
instrumentation of floating-point values abstraction. Moreover, we
present instrumentation for array abstractions, which allows DIVINE
to allocate symbolically large arrays and compete on a broader set of
benchmarks.

1 Verification Approach and Software Architecture

DIVINE is designed to separate the responsibilities of verification to
autonomous modules [4]. We distinguish main components as a virtual machine,
i.e. LLVM interpreter [4], state-space exploration algorithms (i.e., model-checker
MC), static analysis together with instrumentation of LLVM [3], and support
layer for the program environment in the form of standard C snd C++ libraries
and verification dedicated operating system – DiOS [5]. DiOS is a lightweight
posix system, whose primary responsibility is to take care of the scheduling of
threads or processes.

To handle non-deterministic values, DIVINE employs smt-based symbolic
representation. It would be possible to maintain and manipulate symbolic data
directly in the interpreter. However, in order to not complicate its internals,
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%z = add %x %y

%z = call @sym_add (%x, %y)

term sym_add(value x, value y) {
if (is_constant(x))

x = smt::lift(x);
if (is_constant(y))

y = smt::lift(y);
return smt::add(x, y);

}

Fig. 1. Instrumentation replaces instructions that operate on nondeterministic
values by abstract instructions (e.g., add → sym add). The abstract domain is
provided as a C++ library (dom). The domain implements abstract operations
– lifting of constants and manipulation with smt representation.

we shift responsibility for symbolic values to the verified program itself. This is
performed using an LLVM-to-LLVM transformation in the following steps:

1. A dataflow analysis determines which LLVM instructions come into contact
with non-deterministic values.

2. All affected instructions are replaced by their abstract counterparts1.
3. Bitcode is linked with the implementation of symbolic operations.

This approach is actually more general and allows us to change the domain of
scalar values by providing an implementation of an arbitrary abstract domain
in step 3. To perform a bit-precise verification, we have chosen to use a term
domain that represents data by smt formulae in bit-vector theory. In this domain
operations manipulate formulae representations of data, alternatively extend a
global path condition by program constraints (see Figure 1).

The instrumented program is executed on an explicit virtual machine, while
symbolic values are maintained in the program’s memory. The exploration
algorithm has to extract symbolic formulae from the program’s memory in order
to decide the feasibility of the current state and equality with the previously
visited states. These queries are decided by an external smt solver (either Z3 [1]
or STP [2] depending on the used theory).

Floating-point values: To support abstraction of nondeterministic floating-
point values, we have extended the term domain by implementation of symbolic
counterparts to LLVM instructions on floating-point values. Moreover, we
abstract calls to standard library math functions whenever an equivalent
operation in smt theory exists (e.g., fabs – computes absolute value). In this

1 The abstract operation takes care of lifting possibly concrete arguments into a
symbolic representation, and calls the implementation of symbolic operation on lifted
arguments.



way, we keep more semantic information about operations for an smt solver.
Since DIVINE’s primary smt solver is STP, which does not support a floating-
point theory, we switch to Z3 solver to answer floating-point theory queries.

Array abstraction: In compilation-based abstraction, it would be convenient
to instrument abstraction of arrays in a similar manner as scalar values. However,
abstract arrays behave differently to scalars. The main difference is that arrays
may contain values from other abstract domains (either scalars or arrays).
Consequently, the array-manipulating operations (load, store, getelementptr)
need to operate on multiple domains. To capture this behavior we introduce
domain categories:

1. Scalar domains defines arithmetic and relational operations on scalar values,
and respect value semantics (i.e., each operation creates a new value).

2. Aggregate domains abstract program objects and allows for parametrization
of the domain of values kept in the aggregate.

Moreover, in comparison to scalar values that respect value semantics, array
values need to work as pointers to a shared object, i.e., each reference to an
array in the program consists of a pointer to a shared symbolic array and a
symbolic offset to that array. Hence updates of an array also become visible to
its other references.

Two abstract domains parametrize our presented array domain. The first
domain is used for the representation of array content, and the second is used
to represent offset to the array, as well as the size of the array.

For the competition run, we have used the term domain to represent array
content as well as its offsets. This allows us to utilize the smt theory of
arrays with the already used representation of scalar values. Moreover, this
representation also simplifies transitions between aggregate and scalar domains
since loads from symbolic arrays are already in the term domain. Since smt array
theory has strongly typed arrays, we instantiate all of them as byte arrays.
Consequently, a load of a larger object performs multiple loads, which are
concatenated to the resulting value. Similarly, a store performs multiple stores
for each byte of the storing object.

2 Strengths and Weaknesses

Besides the limitation of interpreter modifications, the advantage of static
transformation is that it is performed only once on the bitcode, and the
subsequent verification with possible refinement can be executed without
repeated transformation.

Even though the array domain allows us to perform analysis on array
manipulating code, we reach limits of the symbolic representation on benchmarks
that iterate over a symbolic variable (e.g., size of a symbolic array). Such
benchmarks result in possibly infinite loop unrolling. In the future, we intend to
parametrize the array domain by bounded abstract domains (e.g., congruence
domains).



3 Tool Setup and Configuration

The verifier archive can be found on the SV-COMP 2020 page2 under the name
DIVINE. In case the binary distribution does not work on your system, we
also provide a source distribution and build instructions at https://divine.

fi.muni.cz/2020/sv-comp.
It is usually sufficient to run divine as follows: divine check --symbolic

--svcomp TESTCASE.c. This command runs DIVINE with the smt-based
representation of symbolic data described in this paper and with SV-COMP-
specific instrumentation.

For SV-COMP benchmarks, the divine-svc wrapper handles additional
settings.3 The only option used for DIVINE is --32 for 32 bit categories. The
wrapper sets DIVINE options based on the property file and the benchmark.
In particular, DIVINE enables symbolic mode if any nondeterminism is found,
sequential mode if no threads are found, and it sets which errors should be
reported based on the property file. It also generates witness files. More details
can be found on the aforementioned distribution page.

DIVINE participates in all categories, but it can only produce non-unknown
results for the error reachability and memory safety categories.

4 Software Project and Contributors

The project home page is https://divine.fi.muni.cz. DIVINE is open source
software distributed under the ISC license. Active contributors to the tool are
listed as authors of this paper.
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