
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

DivSIM, an Interactive Simulator for LLVM Bitcode

Petr Ročkai · Jǐŕı Barnat

Received: date / Revised version: date

Abstract In this paper, we introduce an interactive

simulator for programs in the form of LLVM bitcode.

The main features of the simulator include precise con-

trol over thread scheduling, automatic checkpoints and

reverse stepping, support for source-level information

about functions and variables in C and C++ programs

and structured heap visualisation. Additionally, DivSIM
is compatible with DiVM (DIVINE VM) hypercalls,

which makes it possible to load, simulate and analyse

counterexamples from an existing model checker, and

with abstract bitcode generated by LART (LLVM Ab-

straction and Refinement Tool), making it suitable for

direct analysis of abstract and/or symbolic programs

and counterexamples.

Keywords simulation, model checking, counterexam-

ple, parallelism, abstract interpretation, symbolic exe-

cution, LLVM

Declarations

Funding Not applicable.

Conflict of interest Not applicable.

Availability of data and material Not applicable.

Code availability Yes, under an open-source licence.

The present paper is an extended version of [19].

1 Introduction

Verification tools are increasingly adopting LLVM bit-

code as their input language of choice. A frequent rea-

Faculty of Informatics, Masaryk University
Brno, Czech Republic

son for implementing LLVM-based model checkers (and

other analysis tools) is that they can leverage exist-

ing compiler front ends, CLang in particular. This in

turn enables those model checkers to work with C and

even C++ programs without dealing with their irregu-

larity and complexity. Clearly, this tremendously im-

proves the usefulness of any such tool, since C and

C++ are widespread implementation languages, and

implementation-level model checking is naturally desir-

able for many reasons.

An additional benefit of the standardisation around

the LLVM IR [23] (intermediate representation) is that

an ecosystem of tools is emerging, where those tools can

cooperate through the common input format. Analysis

and model checking tools can be used to ascertain cor-

rectness of the program with respect to a specification;

however, when they find that there is a violation, print-

ing “property violated” is rarely enough. For the result

to be genuinely useful, it must somehow convey how the

specification is violated to the user, so they can anal-

yse the problem and fix their program. One option is

to print a counterexample trace, which describes the vi-

olating execution of the program. In traditional model

checkers, for example, it is often sufficient to provide a

textual description of the entire execution, since the in-

put model is usually small and its states and transitions

can be described compactly.

More advanced tools, however, provide a simulator,

an interactive tool for stepping through the counterex-

ample, where the user can highlight and investigate par-

ticular sections of the counterexample in more detail,

and fast-forward through other, uninteresting parts. A

simulator is often also useful as an exploratory tool:

the behaviour of the system can be explored by the

user, manually navigating through its state space and

inspecting variables along the way.

2 Petr Ročkai, Jǐŕı Barnat

In case of C and C++ programs, it is vitally im-

portant that counterexamples can be inspected inter-

actively, since the state of a program is a very compli-

cated structure, often comprising hundreds of kilobytes

of structured data. Moreover, violating executions can

be quite long, easily hundreds or thousands of distinct

states, with non-trivial relationships.

1.1 Concurrency and Threads

It is often the case that modern C and C++ programs

make use of concurrency and parallel execution. As is

widely appreciated, these bring unique challenges not

only to development and programming itself, but also

to subsequent validation and verification efforts. One

of the important tools in our arsenal for dealing with

these challenges are rigorous, automated methods for

analysis of programs; very often either model checking,

or methods based on it.

In fact, what model checkers bring to the table in

this regard, when compared to traditional testing, is

universal quantification over possible executions of the

concurrent program. That is, given a model checker,

we can ask questions like ‘is there an execution of this

program where a null pointer is dereferenced?‘ instead

of the more straightforward ‘is a null pointer derefer-

enced in this particular execution?’ Moreover, this can

be done using a fraction of the resources that would be

required to tackle the executions one by one.

However, concurrency brings a whole lot of

interaction-at-a-distance effects to software. While

powerful automated tools can often uncover unsafe

or otherwise unexpected behaviour in concurrent pro-

grams, these effects bring the need for detailed yet

tractable counterexamples into sharp focus. This is be-

cause the behaviours of a concurrent program are even

harder to analyze than those for sequential programs,

and this carries over to the counterexamples.

This increase in complexity is also closely related to

the much harder question that we have asked: if we have

a particular (sequential) execution with a null derefer-

ence in it, we want to further know where in the pro-

gram it happened, and perhaps how the program got

into that state. We may want to re-trace the decisions

the program has made, or inspect the call stack at the

point of the crash. But the decisions are explicit and

well-understood: which if branch was taken? Was the

loop executed again, or was it terminated? Each deci-

sion corresponds to a syntactic element of the source

code.

With concurrency, there is a new type of decision,

disconnected from the syntactic structure of the pro-

gram: as execution flits back and forth between differ-

ent threads and virtual ‘decisions’ appear at points in

the program that would be otherwise linear. Those are

of the form ‘do I continue to follow this thread of exe-

cution, or do I follow another for a while?’. Of course,

this information is present in the model checker output,

in the counterexample trace – it tells the user exactly

when the focus needs to shift to another thread. How-

ever, this also makes following the trace significantly

more difficult, and makes interactive counterexample

analysis even more important.

1.2 Symbolic and Abstraction-Based Analysis

An important technique for analysing programs is the

use of symbolic representation of values: instead of a

concrete value, such as 7, variables are represented us-

ing unevaluated terms (expressions), such as 3a + 1.

The free variables (in this case a) in those terms rep-

resent inputs to the program (more details relevant for

the present paper are given in Section 3.3). This way,

many more behaviours can be captured in a single run

of a symbolic executor or a symbolic model checker than

is possible with explicit methods. In fact, this is exactly

analogous to the way concurrency is tackled by auto-

mated tools: however, in this case, the universal quan-

tification is for program input instead of linearizations

of concurrent executions.

Of course, the price is increased computational com-

plexity of the task, and increased conceptual and im-

plementation complexity of the tool. Fortunately, from

the point of view of the user, the situation is very differ-

ent from concurrency – symbolic execution does not, in

principle, add complexity to counterexamples. In the-

ory, it is entirely possible to present a counterexample

that is indistinguishable from one obtained with explicit

methods. In practice, there are technical obstacles that

need to be addressed to enable this kind of user expe-

rience. We will discuss those issues and how to solve

them in Section 4.5.

Another powerful verification technique in

widespread use is abstraction, often coupled with

automated abstraction refinement (for instance

through the well-known CEGAR process). Again, in

theory, the situation with counterexamples and their

analysis is unchanged – a counterexample can be

presented in essentially the same way like with explicit

methods. The technical challenges are somewhat more

pronounced though. These will be discussed in more

detail in Section 4.4.

In addition to analysing counterexamples, it is

sometimes useful to explore symbolic or abstract state

spaces directly. This comes with additional challenges

DivSIM, an Interactive Simulator for LLVM Bitcode 3

and limitations, though arguably the benefits outweigh

the drawbacks. We briefly discuss this mode of opera-

tion in Section 3.3.

1.3 Contribution

The main contribution of this paper is a reusable simu-

lator for C and C++ code. Since it builds on the LLVM
intermediate language, it can be used by multiple differ-

ent tools which produce counterexamples or otherwise

work with LLVM bitcode, and is easily adapted to new

high-level languages with LLVM-based toolchains (like

Objective C or Rust). To the best of our knowledge,

this work is unique in the sense that no other simulator

which would handle C++ programs is available, and

simulators which handle C code often miss important

features.

From a more theoretical standpoint, the debug graph

(described in Section 3.5) represents a new approach to

reconciling low-level data as it exists during program

runtime with the high-level structure declared in the

source code. This, in turn, enables a new architecture

based on compiled code, and allows DivSIM to leverage

existing debugger-focused infrastructure (debug meta-

data in particular). As a result, the implementation is

especially simple and compact.

Finally, in addition to a directly usable tool, we pro-

vide an API (application programming interface, based

mainly on the debug graph) which can be used for au-

tomation, for building extensions and even new tools

that make use of the simulator internally. This is dis-

cussed in more detail in Section 7.3.

1.4 Paper Structure

The rest of this paper is structured as follows: in Sec-

tion 2 we discuss related work and compare our ap-

proach to existing tools. Section 3 describes the LLVM
bitcode as it is used by DivSIM, how the simulator rep-

resents the program state and also introduces the debug

graph. The focus of Section 4 is presentation of the data

aspects of a program, while Section 5 is concerned with

the program’s state space. A discussion of soundness

and assumptions made about the simulated system are

discussed in Section ?? while Section 7 mentions some

of the more important implementation details. Finally,

Section ?? gives a summary of an empirical evaluation

and Section 9 wraps the paper up. Additional resources

are available online.1

1 https://divine.fi.muni.cz/2021/sim/

2 Related Work

It is a well-established fact that isolating some bad be-

haviour of a program in a test is, in itself, not sufficient

to easily explain the cause of the problem [2]. The situ-

ation is similar in (linear-time) model checking, where

a counterexample trace can often be extracted easily

enough, but it may not contain sufficient detail, or con-

versely, may swamp the user in large amount of irrele-

vant data [25]. The problem also goes beyond the soft-

ware realm, as witnessed in, for instance, verification of

MATLAB Simulink designs [4].

2.1 Counterexamples and Defect Analysis

There are basically two orthogonal approaches that at-

tempt to resolve these problems. One is to locate, or

at least narrow down, the error automatically, in the

hopes that from such a narrowed-down trace, the user

will be able to understand the problem by inspection of

the source code. In the domain of software verification,

this approach is pursued by many tools: counterexam-

ples for violation of temporal properties, generated by

the software model checker SLAM [3], for instance, can

be analysed and reduced to only cover a small num-

ber of source lines, in which the root cause of the er-

ror is most likely to lie [2]. An approach to succinctly

describe assertion violations (violations of safety prop-

erties), based on automated dependency analysis, has

also been proposed [5]. Finally, counterexamples from

CBMC can be post-processed, in an approach similar to

those mentioned above, with a tool called explain [9],

in this case based on distance metrics.

Unfortunately, even if the problem area is only a

few lines of source code, it can be very hard to un-

derstand the dynamic behaviour during the erroneous

execution. The problem gets much worse when the pro-

gram in question is parallel, because reasoning about

the behaviour of such programs is much harder than it

is in the sequential case.

To make understanding and fixing problems in pro-

grams (or complex systems in general) easier, many for-

mal verification tools come equipped with a simulator.

For instance the UPPAAL tool for analysis of real-time

systems provides an integrated graphical simulator [6].

Another example of a formal analysis tool with a graph-

ical simulator would be LTSA [17], based on labelled

transition systems as its modelling formalism.

Like many verification tools, the valgrind [18] run-

time program analyser is primarily non-interactive, but

it provides an interface to allow interactive exploration

of program state upon encountering a problem, based

on gdb [22].

4 Petr Ročkai, Jǐŕı Barnat

2.2 LLVM-Based Tools

Our simulator is based on DiVM [20], an extension of the

LLVM language that allows verification and analysis of

a wider class of programs (a more detailed description

of the DiVM extensions is given in Section 3.1). Since

pure LLVM is retained as a subset of the DiVM language,

DivSIM can also transparently work with pure LLVM
bitcode.

An important part of the DIVINE [14] ecosystem is

the tool LART [13], which implements abstraction as a

transformation of LLVM bitcode. It provides multiple

abstract domains, though one of them stands out – the

domain of free terms. Coupled with an SMT solver, this

is how DIVINE implements symbolic model checking

(more details are provided in Section 3.3). The trans-

formed bitcode can be directly processed by the simu-

lator without special support, though a few extensions

(described in Section 4.5), make its use considerably

more comfortable.

Many other automated analysis tools fit into the

wider LLVM ecosystem. One of the most prominent ex-

amples is KLEE [7], a symbolic executor for LLVM bit-

code. Of course, the bitcode which is accepted by KLEE

can be also loaded into DivSIM, though in itself, this is

only of limited use.

Fortunately, we can do better, with the help of

DiOS [21], a small operating system which compiles to

the DiVM language. Recently, DiOS has been ported

to run on KLEE, using a thin compatibility layer that

emulates DiVM hypercalls using a mix of C stubs and

built-in functions provided by KLEE. Besides the obvi-

ous effect – making it possible to link programs to DiOS
and analyse the result with KLEE – this also allows us

to generate DivSIM-compatible counterexamples from

KLEE (more details are given in Section 5.5).

Symbiotic [8] extends KLEE with program slicing

and static analysis. Since it uses KLEE in the backend,

the (post-slicing) bitcode can be likewise loaded into

our simulator, though we are not aware of anyone at-

tempting to use DiOS with Symbiotic, hence the path

to compatibility of counterexamples might be slightly

more involved.

While we are not aware of any other tools which

would be compatible with DiVM/DivSIM-style coun-

terexamples out of the box, it should be easy, in prin-

ciple, to adapt most of them, either directly, or by

porting DiOS to run on them (which provides addi-

tional benefits). Some of the possible candidates are

the Vienna Verification Toolkit VVT [10], the statis-

tical model checker Lodin [16], or the stateless model

checkers Nidhugg [1] and GenMC [12].

2.3 Comparison to Symbolic Debuggers

Besides its relationship to various simulators for mod-

elling and design languages, a simulator for LLVM bit-

code is, through its application to code written in stan-

dard programming languages like C, related to standard

symbolic debuggers. A ubiquitous example on POSIX

systems is gdb, the GNU debugger [22]. Unlike a sim-

ulator, which interprets the program, a debugger in-

stead attaches to a standard process executing in its

native environment. A more recent example would be

lldb [15], which works in essentially the same way, but

builds on LLVM components.

As outlined above, simulators and debuggers sub-

stantially differ in their mode of operation and this

leads to very different overall trade-offs. For example, a

simulator is much more resilient to memory corruption

than a debugger, because the latter has only limited

control over the process it is attached to. Both types of

tools rely on understanding the execution stack of the

program; however, if the program corrupts its execution

stack, a debugger must rely on imprecise heuristics to

detect this fact and risks providing wrong and possibly

misleading information to the user. The simulator can,

on the other hand, quite easily prevent such corruption

from happening, since it simulates the program at in-

struction level, and can enforce much stricter memory

protections.

On the other hand, the situation is reversed when

the program interacts with its surroundings through

the operating system. In a debugger, such communica-

tion comes about transparently from the fact that the

program is a standard process in the operating system

and has all the standard facilities at its disposal. In

a simulator, communication with the operating system

must be specifically relayed and due to imperfections in

this translation, some programs may misbehave in the

simulation.

Finally, a simulator has a substantial advantage in

two additional areas: first, a simulator can very pre-

cisely and comfortably control thread interleaving. This

allows analysis of subtle timing-dependent issues in the

program. Second, since a simulator has a complete rep-

resentation of the program’s state under its control, it

can easily move backwards in time or compare variable

values from different points in the execution history.

While both scheduler locking and reversible debugging

exist to a certain degree in traditional debuggers [24],

those features are very hard to implement and usually

quite limited.

DivSIM, an Interactive Simulator for LLVM Bitcode 5

3 LLVM Bitcode

The LLVM bitcode (or intermediate representation) [23]

is an assembly-like language primarily aimed at optimi-

sation and analysis. The idea is that LLVM-based analy-

sis and optimisation code can be shared by many differ-

ent compilers: a compiler front end builds simple LLVM
IR corresponding to its input and delegates all further

optimisation and native code generation to a common

back end. This architecture is quite common in other

compilers: as an example, GCC contains a number of

different front ends that share infrastructure and code

generation. The major innovation of LLVM is that the

language on which all the common middle and back

end code operates is exposed and available to 3rd-party

tools. It is also quite well documented and LLVM pro-

vides stand-alone tools to work with both bitcode and

textual form of this intermediate representation.

From a language viewpoint, LLVM IR is in a par-

tial SSA form (single static assignment) with explicit

basic blocks. Each basic block is made up of instruc-

tions, the last of which is a terminator. The terminator

instruction encodes relationships between basic blocks,

which form an explicit control flow graph. An example

of a terminator instruction would be a conditional or

an unconditional branch or a ret. Such instructions ei-

ther transfer control to another basic block of the same

function or stop execution of the function altogether.

Besides explicit control flow, LLVM also strives to

make much of the data flow explicit, taking advantage

of partial SSA for this reason. It is, in general, impos-

sible to convert entire programs to a full SSA form;

however, especially within a single function, it is pos-
sible to convert a significant portion of the code. The

SSA-form values are called registers in LLVM and only

a few instructions can “lift” values from memory into

registers and put them back again (most importantly

load and store, respectively, plus a handful of atomic

memory access instructions).

From the point of view of a simulator, memory and

registers are somewhat distinct entities, both of which

can hold values. Memory is completely unstructured

at the LLVM level, the only assumption is that it is

byte-addressed (endianity of multi-byte values is config-

urable, but uniform). Traditional C stack is, however,

not required. Instead, all “local” memory is obtained

via a special instruction, alloca, and treated like any

other memory (memory obtained by alloca is assumed

to be freed automatically when the function that re-

quested the memory exits, via ret or any other way,

e.g. due to stack unwinding during an exception prop-

agation). Therefore, a C-style stack is a legitimate way

to implement alloca, but not the most convenient in a

simulator (for more details on how memory is handled

in our simulator, see Section 3.2).

3.1 Verification Extensions

Unfortunately, LLVM bitcode alone is not sufficiently

expressive to describe real programs: most importantly,

it is not possible to encode interaction with the operat-

ing system into LLVM instructions. When LLVM is used

as an intermediate step in a compiler, the lowest level

of the user side of the system call mechanism is usually

provided as an external, platform-specific function with

a standard C calling convention. This function is usu-

ally implemented in the platform’s assembly language.

The system call interface, in turn, serves as a gateway

between the program and the operating system, unlock-

ing OS-specific functionality to the program. An impor-

tant point is that the gateway function itself cannot be

implemented in portable LLVM. Moreover, while large

portions of the kernel are often implemented in C or a

similar portable language, they are also tightly coupled

to the underlying hardware platform.

The language of “real” programs is, therefore, LLVM
enriched with system calls, which are provided by the

operating system kernel. For verification purposes, how-

ever, this language is quite unsuitable: the list of system

calls is long (well over 100 functions on many systems)

and exposes implementation details of the particular

kernel. Moreover, re-implementing a complete operat-

ing system inside every LLVM analysis tool is waste-

ful. To reduce this problem, a much smaller set of req-

uisite primitives was proposed in [20] (henceforth, we

will refer to this enriched language as DiVM). Since for

model checking and simulation purposes, the program

needs to be isolated from the outside world, we can skip

most of the complexity of an operating system kernel –

communication with hardware in particular. Therefore,

it is possible to implement a small, isolated operating

system in the DiVM language alone. One such operat-

ing system is DiOS [21] – the core OS is about 2300

lines of C++, with another 2300 lines of code provid-

ing POSIX-compatible file system and socket interfaces.

The user-space components (libc, libm, C++ stan-

dard libraries and so on) are largely taken from existing

3rd-party implementations, augmented with fewer than

4000 lines of custom code.

Thanks to its support for the DiVM language, our

simulator can transparently load programs which are

linked to DiOS and its libc implementation. Since a

program compiled into the DiVM language is fully iso-

lated from any environment effects, it can be simulated

just like a pure LLVM program could be.

6 Petr Ročkai, Jǐŕı Barnat

Finally, while the simulator uses DiVM to evaluate

program instructions and hence relies on correctness

of the implementation, errors in DiOS have a smaller

impact. The DiOS code is executed in the virtual ma-

chine, and is subject to its error checking: therefore, in

this case, the most likely outcome is by far a spurious

error which can be analysed using the simulator itself.

3.2 Program Memory

Internally, the simulator uses DiVM to evaluate LLVM
bitcode, and therefore, how memory is represented in

the simulator is directly inherited from DiVM. This

means that we can take advantage of the fact that

DiVM tracks each object stored in memory separately,

and also keeps track of relationships (pointers) between

such objects.2 This way, the simulator precisely knows

which words stored in memory are pointers and the ex-

act bounds of each object in memory.

Moreover, DiVM can efficiently store multiple snap-

shots of the entire address space of the program, both

in terms of space (most of the actual storage is shared

between such snapshots) and time (taking a snapshot

needs time roughly proportional to the total size of

modified objects since the last snapshot). Once a snap-

shot is taken, it is preserved unmodified, regardless of

the future behaviour of the program (that is, it becomes

persistent).

(slot)

(slot)

caller

f()

...

(slot)

(slot)

globals

(slot)

(slot)

caller

f()

(slot)

caller = 0

main()

Fig. 1: Execution stack and global variables.

The execution stack of an LLVM program consists

of activation frames, one for each active procedure

call. In DiVM, activation frames are separate memory

objects. Moreover, each memory-stored local variable

(i.e. those represented by alloca instructions) is again

2 How this is achieved is described in more detail in [20].

represented by a distinct memory object. Each frame

object contains 2 pointers in its header (one points at

the currently executing instruction, the other to the

parent frame). Besides the header, the rest of the ob-

ject is split into slots, where each slot corresponds to

a single LLVM register. An example stack structure is

shown in Figure 1. The correspondence between slots

and LLVM registers is maintained by DiVM and is avail-

able to the simulator.

Together, those features of DiVM make it very easy

to access the program state in a highly structured fash-

ion. When compared to a traditional debugger, which

must work with nearly unstructured memory space, the

information our simulator can provide to the user is si-

multaneously easier to obtain and more detailed and

reliable. Finally, since DiVM strictly enforces object

boundaries, both the control stack and heap structure

in our simulator are very well protected from overflows

and other memory corruption bugs in the program.

Therefore, the simulated program cannot accidentally

destroy information which is vital for the functioning of

the simulator, like all too often happens in debuggers.

3.3 Abstraction and Symbolic Values

As we have briefly mentioned in Section 2.2, it is pos-

sible to perform symbolic and abstract model checking

with DiVM by using a separate tool called LART [13]

(LLVM Abstraction and Refinement Tool) to transform

the input bitcode. LART itself performs abstraction in

the following way:

1. some of the values in the input program are marked

as inputs, either manually (by calling a special-

purpose C function to obtain the value), indirectly

(via DiOS system calls) or automatically (by an

under-approximation refinement tool),

2. using a lightweight dataflow analysis, LART then

computes which instructions in the program may

come into contact with abstract values and in-

struments them to perform abstract operations, if

needed,

3. DiOS provides two libraries, LAVA (Library of

Abstract Values) and LAMP (LART Metadomain

Package), which together supply the definitions (im-

plementation) of the abstract operations inserted in

the previous step.

For traditional abstract domains (interval arith-

metic, congruence classes and so on), this is all that

needs to be done – the transformed bitcode can be di-

rectly processed by all DiVM-based tools (including Di-
vSIM) without any special support for abstraction.

DivSIM, an Interactive Simulator for LLVM Bitcode 7

Of course, if presented with an abstract version of a

program, a model checker may find a counterexample

which then turns out to be infeasible: for this reason, it

is desirable to process such counterexamples to either

validate them, or if they are indeed infeasible, to refine

the abstraction as needed. Likewise, by interactively ex-

ploring the abstract state space, it may be possible to

reach abstract states which do not appear in any con-

crete executions. In this case, it is up to the user to be

careful. However, they need to be given sufficient infor-

mation about the abstract values which appear in the

program – how DivSIM does this is further discussed in

Section 4.4.

As we have hinted at in Section 2.2, symbolic model

checking in DIVINE is implemented on top of this ab-

straction mechanism. This is achieved by using a spe-

cific abstract domain, the term domain, in which values

are unevaluated terms with free variables. However, the

abstract domain itself does not constrain the execution

of the program at all – all behaviours involving such ab-

stract values become possible. To restrict the program

to behaviours which actually exist in the concrete pro-

gram, the term domain maintains a set of constraints,

updated every time a conditional branch which depends

on a symbolic value is executed (these constraints are

also known as a path condition).

Since operations on terms are implemented in the

program itself (by the LAVA library, which is simply

linked into the program under test with the rest of

DiOS), these constraints are simply an object in the

memory of the program. When executed in symbolic

mode, the model checker will extract these constraints

from program memory, convert them into an SMT

query and present it to a suitable solver. If the con-

straints in a particular program state turn out to be un-

satisfiable, the execution can be abandoned. Therefore,

infeasible counterexamples are ruled out. The conse-

quences for DivSIM are further discussed in Section 4.5.

3.4 Relating Bitcode to Source Code

In native code debuggers, the relationship between the

binary and the original source code is often not quite

obvious. For this reason, in addition to the executable

binary, the compiler emits metadata which describe

these relationships. For instance, it attaches a source

code location (filename and line number) to each ma-

chine instruction. This way, when the debugger exe-

cutes an instruction, it can display the relevant piece

of source code. Likewise, it can analyse the execution

stack to discover how the currently executing function

was called, and display a backtrace consisting not only

of function names, but also source code lines. This is

important whenever a given function contains two sim-

ilar calls.

The situation is analogous in LLVM-based tools.

Compiler front ends are therefore encouraged to gen-

erate debuginfo metadata (in a form that reflects the

structure of the DWARF debug information format,

which is widely used by native source-level debuggers).

Besides the vitally important source code locations, the

metadata describe local and global variables and their

types (including user defined types, like struct and

union types in C). This in turn enables the debugger

to display the data in a structured way, resembling the

structure which exists in the source code. For example,

struct types in C have named fields – the debugger

can use the debug metadata to discover the relation-

ship between offsets in the binary representation of the

value with the source-level field names (an example is

shown in Figure 2).

3.5 Debug Graph

The memory graph maintained by DiVM is a good basis

for presenting the program state to the user, but on its

own is insufficient: the only type information it contains

is whether a particular piece of memory holds a pointer

or not. Therefore, we overlay another graph structure

on top of the memory (heap) graph, with richer type in-

formation based on debuginfo metadata (more details

on how this graph is computed will be presented in

Section 4). The nodes in the debug graph may be fur-

ther structured: they have attributes (atomic proper-
ties, such as an integer or a floating point value), com-

ponents and relations. While both components and rela-

tions are again nodes of the graph, they crucially differ

in how they relate to the underlying memory: compo-

nents of a debug node represent the same memory as

their parent node; for example, a debug node which

consists of a struct C type will contain a component

for each field of the struct. In contrast, relations of a

debug node correspond to the pointers embedded in the

memory it represents (it may, however, point back at

the same object it is embedded in). An example debug

graph is shown in Figure 3.

Since memory objects are persistent in DiVM
(cf. Section 3.2), so is the debug graph in our simulator.

This means that objects (debug nodes) are immutable,

i.e. they always come from a snapshot of the memory of

the program. Since it would be too expensive to make

a copy of the entire memory after every instruction,

such snapshots are implemented via copy-on-write se-

mantics.

8 Petr Ročkai, Jǐŕı Barnat

struct Point { float x, y; };

struct Circle
{

Point center;
float radius;

};

Circle c = {
.center = { .x = 0, .y = 0.5 },
.radius = 7

};

binary: 000000000000003f0000e040
.center:

type: Point
.x:

type: float
value: 0

.y:
type: float
value: 0.5

.radius:
type: float
value: 7

Fig. 2: An example C struct type and the corresponding representations: binary and structured (the latter is

only possible with debug metadata).

(elided)

(elided)

scheduler:deref

(elided)

fault:deref

attributes:
 address: heap* 8a723d97 0+0
 type: (VFS = VFS)
._manager:
 type: Manager*
 value: [heap* 684802a5 0 ddp]
 related: [deref]

vfs:deref

attributes:
 address: heap* 4 0+0
 value: [i8 0 d]

globals:deref

(elided)

threads._storage.[0]:deref

attributes:
 address: heap* 14f75f5a 0+0
 type: _VM_Frame
 pc: code* 142 7
 insn: %07 = call [code* 1 0 ddp]
 location: /divine/src/dios/core/main.cpp:152
 symbol: _start
.l:
 type: int
 value: [i32 0 d]
 scope: _start
.argc:
 type: int
 value: [i32 1 d]
 scope: _start

(elided)

_frame:deref

(elided)

_tls:deref

attributes:
 address: heap* fa939251 0+0
 type: char*
 string: "test/c/1.assert.c"
 value: [heap* 51741c6 0 ddp]
 related: [deref]

argv:deref

attributes:
 address: heap* b110917c 0+0
 type: char*
 value: [const* 0 0 ddp]
related: [deref]

envp:deref

attributes:
 address: heap* 51741c6 0+0
 type: char
 value: [i8 116 d]

deref

(elided)

_manager:deref

attributes:
 address: heap* 876dd734 18+0
 type: (value_type = shared_ptr<__dios::fs::INode>)
related: [16]

_standardIO.__elems_:deref

Fig. 3: A debug graph of a simple program. A single memory object may contain multiple component debug nodes

which are rendered textually. The arrows correspond to relations. The depicted graph was obtained directly from

the simulator; the only change was that descriptions of some of the nodes were elided for presentation purposes.

DivSIM, an Interactive Simulator for LLVM Bitcode 9

4 Working with Data

Providing facilities for inspecting data of the program

is one of the main functions of an interactive debugger

or a simulator. This data can be presented in different

forms and from different starting points. In our simu-

lator, heap memory is structured explicitly as a graph,

and we can leverage this to greatly improve presenta-

tion of data. An example of such a graph is shown in

Figure 3. Each node of the graph corresponds to a sin-

gle in-memory object, which can have (and often has)

additional internal structure. The internal structure re-

flects the C/C++ type which is deduced from the types

of pointers pointing at this particular node.

4.1 Starting Points

For certain memory objects, the type information is di-

rectly encoded in the metadata generated by the com-

piler and does not need to be inferred via pointers. Such

objects are the starting point of the type assignment

process by which the debug graph is obtained.

In principle, there are 2 types of such objects: acti-

vation frames and globals. Both consist of slots which

in turn contain values. Values in those slots either cor-

respond to values of (local or global) source-level vari-

ables, or contain pointers to variables held elsewhere in

memory. In both cases, a component debug node is cre-

ated for each slot, based on the debug information gen-

erated by the compiler. These components then form a

basis for presenting the data to the user.

Additionally, in DiVM, there is always a single dis-

tinguished root object in the heap, from which the en-
tire heap is reachable, including the stacks of all threads

and any kernel data structures. The address and the C

type of this root object is also available to the simula-

tor, and is mainly used to discover all the nodes of the

2 above-mentioned types.

4.2 Typing the Heap

In all cases, the type information available for the start-

ing points is used to derive type information for the por-

tion of the heap reachable from that starting point. For

frames, we can deduce which function the frame belongs

to, and obtain information about the frame layout used

by that function. That is, for each LLVM register, we

obtain a corresponding C type, which is usually either

a primitive type or a pointer. If the type is a pointer

and it is not null or otherwise invalid, there is an edge

in the graph of the heap corresponding to this pointer.

The object at the other end of the edge is then assigned

the base type of the pointer, that is, the type of the value

obtained by dereferencing the pointer. This procedure

is then repeated recursively until all objects where type

information exists are assigned a type.

Of course, there is a potential for ambiguity: not

all C/C++ programs are consistently typed, therefore,

multiple edges pointing at a single object can each carry

a different type. In this case, we collect all the applica-

ble types and construct a synthetic union type, which is

assigned to any such ambiguous debug node. This am-

biguity might propagate downstream from an affected

node, but for most programs, this does not appear to

pose a significant problem.

4.3 Relating Data and Control

The control flow of a C program is reflected in the exe-

cution stack which is part of the program’s data. C and

C++ are lexically scoped languages: which variables

are currently in scope depends on which function (and

possibly which block in that function) is currently exe-

cuting. This is achieved by making local variables part

of the execution stack: when a function is entered, an

activation frame (or activation record) is pushed onto

the execution stack. In a native execution environment,

the frame has space for CPU register spills and for lo-

cal variables which have their address taken. In DiVM,

there are no general-purpose registers as such; instead,

LLVM registers are stored inside the frame itself. Any

address-taken variables are stored as separate objects

(and their address is stored in a register).

Additionally, in a typical implementation of C, the

activation frame contains a return address, which is a

pointer to the call instruction that caused the current

function to execute. In DiVM, the frame instead con-

tains a program counter (in a real CPU, the program

counter, also known as instruction pointer, is held in a

register). The program counter tells us which function,

and which instruction within that function, is currently

being executed. Each instruction can in turn be tied, via

debug metadata (cf. Section 3.4), to a particular source

code location (a source file and a line number).

As an example of how this is used in the simulator, if

the user requests to list the source code of the currently

executed function, the simulator examines the current

active activation frame to find the current value of the

program counter. Then it proceeds to read the corre-

sponding debug metadata to obtain the source code file

name, reads the source file, finds the line correspond-

ing to the program counter and prints the surrounding

function (example output is shown in Figure 4).

10 Petr Ročkai, Jǐŕı Barnat

> show $frame
attributes:

address: heap* bf24efc5 0+0
shared: 0
pc: code* 1 0
location: test/c/1.assert.c:5
symbol: main

related: [caller]

> source
3 int main()
4 {

>> 5 assert(0);
6 return 0;
7 }

Fig. 4: An example interaction: listing source code.

4.4 Abstract Values

Debug nodes which correspond to scalars (simple

atomic values) have a value attribute, which displays

either the integer or floating-point value (for base types)

or the numeric value of a pointer, along with any tags it

might carry. This information is of course very valuable

when inspecting the behaviour of a program.

However, as discussed in Section 3.3, DIVINE uses

bitcode transformations to implement abstraction, and

abstract values are constructed and manipulated by

the simulated bitcode like any other value. While this

greatly simplifies the implementation of both the model

checker and the simulator, it has one very signifi-

cant downside: without additional support, the debug

nodes which correspond to abstract values display, as

their value, the underlying representation, typically a

pointer to some internal data structure. From a user

point of view, this is not very useful, and it makes fol-

lowing the computation much harder.

On the other hand, it is undesirable to extend Di-
vSIM or the underlying libraries with the knowledge

about every abstract domain that could possibly be

used in a program: after all, the user could easily pro-

vide their own, without modifying DiVM, DivSIM or

LART, simply by implementing the domain operations

in C or C++ and linking the definitions to their pro-

gram. It is therefore important that the code for for-

matting a user-friendly description of a given abstract

value is part of the abstract domain itself.

Fortunately, DiVM provides a mechanism called de-

bug calls, which allows the program to execute a func-

tion and immediately roll back any changes in the pro-

gram state. Such debug calls have no observable effect

on the later behaviour of the program, and hence do

not disturb the simulation. Additionally, the function

so invoked has unrestricted access to the program, it

may refer to any of its variables (memory) and call any

of its functions. In order to be useful, the effect of such a

function call must be observable ‘on the outside’ – this

is achieved through the trace DiVM hypercall, which

provides a one-way channel for the program under test

to send data to the VM.

Together, these two mechanisms make it possible to

simply add a special abstract operation which produces

the human-readable description of the abstract value

and uses the trace hypercall to send it to the VM.

This operation is then invoked as a debug call, which

means that abstract values can be formatted whenever

DivSIM needs to construct an ‘abstract’ debug node,

without disturbing the simulated program.3

The second challenge associated with abstract val-

ues is that some conditional branches can, under ab-

stract interpretation, go both ways. Internally, this is

realized using the choose hypercall, and hence does

not need special support in DivSIM – existing mech-

anisms can be used to instruct the simulator to choose

one or the other branch going forward. Of course, if the

branch turns out to be uninteresting (or even infeasi-

ble) the choice can be easily changed by rewinding the

execution and following the other branch. When fol-

lowing a counterexample, the choices which correspond

to this counterexample are taken automatically (unless

overridden by the user). This is again a consequence of

a general mechanism, further discussed in Section 5.5.

4.5 Symbolic Values

As outlined in Section 1.2, it is increasingly common

that model checkers use symbolic representation for

some (or all) values stored and manipulated by the

program under analysis. This allows many behaviours

to be examined in a single model checker run, though

it does make the analysis more expensive. The conse-

quences for counterexample analysis are comparatively

mild, though in general technically challenging.

Section 3.3 then went on to explain that in DI-
VINE, symbolic model checking is implemented on top

of abstraction. Combined with the previous section, this

could give an impression that nothing more needs to be

done. However, the result would be, again, unsatisfac-

tory: the human-readable description provided by the

term domain can be, at best, the term itself, with em-

bedded free variables. This alone is not especially infor-

3 A minor technical complication arises from the fact that
the formatting function needs to be invoked in the context in
which the abstract value exists. However, since debug nodes
already carry a reference to the snapshot (program state)
which they describe and DiVM can cheaply continue execution
from an arbitrary snapshot, this is not a serious problem.

DivSIM, an Interactive Simulator for LLVM Bitcode 11

mative, though it can be a valuable piece of information

in a wider context.

Recall that besides the values of the terms them-

selves, the term domain maintains a path condition, a

set of logical constraints on the free variables that ap-

pear in the terms. The model checker then uses an SMT

solver to decide whether those constraints can be all

simultaneously satisfied. However, the solver can per-

form an additional service: it can compute a model of

the constraint system: an assignment of concrete values

to free variables.

Equipped with this model, it becomes possible to

evaluate the terms,4 by substituting the assigned val-

ues for the free variables. Since symbolic values now

evaluate to concrete values, these concrete values can

be shown in their respective debug nodes. However, this

does not solve all the problems. The last remaining is-

sue is that of model continuity : if a model is obtained in

a particular program state, the same model can be un-

usable in the next, because additional constraints might

have appeared.

In this respect, the situation when following a coun-

terexample is again simpler than in the more general

‘free exploration’ mode. For any particular execution,

it is always possible to find a single model that works

on each of the states along that execution, assuming

that we know the entire execution beforehand. But this

is exactly the case when analyzing a counterexample:

hence, it is possible to compute a single model and use it

for all the states along the counterexample, guarantee-

ing continuity. During free exploration, the user needs

to look out for changes in the model along the execu-

tion (discontinuities), just as they have to watch out for

infeasible paths in an abstract state space.

5 Navigating the State Space

If we treat the data of a program as a spatial dimen-

sion, it is natural, then, to treat the state space – the

behaviour of the program as it executes – as a time di-

mension. Since the state space is a graph (cf. Figure 5),

the predecessors of a given state (the path from the ini-

tial state to the “current” state – the one that is being

examined) constitute the past of the computation. The

successors, on the other hand, correspond to possible

4 There are actually two implementation choices. The eval-
uation could be handed off to the term domain itself, the
same as for formatting abstract values, though in this case
it is more complicated, since the model needs to be passed
to the evaluation routine. However, since the model checker
needs to be able to evaluate the terms anyway to build the
SMT query, it seems reasonable to do the evaluation on the
DiVM/DivSIM side.

futures of the computation (since the behaviour of the

program is often non-deterministic,5 there is more than

one possible future). In this correspondence of the state-

space graph to temporal behaviour of the program, cy-

cles in the state space clearly correspond to behaviours

that go on forever.

int *mkint()
{

return malloc(4);
}

int main()
{

int *a = NULL;
while (!a)

a = mkint();
puts("ok");

}

1

2

3

4

[0] ok

[0] ok

[0] ok

5

Fig. 5: An example C program and its state space.

In a standard debugger, time can only flow in one

direction, and which of the potential futures is realised

can be influenced, but not controlled. In a simulator,

however, it is possible to both go backwards in time

(rewind the program state to some past configuration)

and to pick exactly which future should be explored.

It is also entirely possible to go back in time and then

select a different future to explore. These capabilities

are derived mainly from the persistent and compact

memory representation (see Section 3.2).

5.1 Stepping Forward

On the other hand, the state space as explored by model

checkers is often too coarse to follow the computation

in detail. The states typically correspond to locations

where threads interleave or where cycles can potentially

form. At this level, the edges in the state space cor-

respond, approximately, to atomic actions in the pro-

gram. Even in heavily parallel programs, though, such

atomic actions will span many instructions and possibly

multiple source lines. A simulator which works at this

level6 can only present very coarse computation steps

to the user and not seeing the intermediate state of

the program can prevent users from relating effects to

5 The behaviour of the program may depend on external
factors, such as scheduling choices, user inputs, asynchronous
events and so on. In DiVM, these all map to the choose hy-
percall.
6 This is often the case in verification-centric tools, partly

because it is a simple implementation strategy that builds on
the same primitives as the verification tool itself.

12 Petr Ročkai, Jǐŕı Barnat

their causes. If the simulator operates with fixed com-

putation steps, the opposite problem can also happen:

the user must step through a large number of irrele-

vant program configurations [11], again frustrating the

debugging effort.

In contrast, debuggers give the user very precise

control over the forward execution of the program,

down to stepping one machine instruction at a time.

However, they also make it very easy to fast forward

through thousands of lines of code, stopping when a

predetermined condition is met, most often a particu-

lar source code line is executed (this feature is known

as a breakpoint).

Building the simulator on top of DiVM, however,

gives us execution control at the level of individual

LLVM instructions, analogous to a debugger. Building

on the instruction stepping mechanism, the simulator

also provides all the control functionality common in

debuggers: source-line stepping – both into and over

function calls – and various breakpoint types (on a

source line or a on a function entry).

5.2 Going Back

In general, it is impossible to execute individual instruc-

tions backwards. However, if execution is perfectly re-

peatable (as it is in a simulator), we can reach any

earlier configuration of the program by replaying the

current execution from the start and stopping right be-

fore the instruction of interest executes.

Additionally, the simulator stores intermediate

states (automatically at convenient locations, or at a

user request). It is then possible to go back to any such

stored state and continue execution from that point.

This can make the above-mentioned process consider-

ably more efficient: it is enough to replay execution from

the most recent stored state that lies on the current ex-

ecution path. See Figure 6.

> start
state #1 [new] -- active threads: [0:0] --
state #2 [new] -- active threads: [0:0] --

executing main at test/c/1.assert.c:5
> stepi

call @_PDCLIB_assert_dios
executing _PDCLIB_assert_dios
at _PDCLIB/assert.c:21

Fig. 6: Discovery of new states during execution.

> backtrace
address: heap* fa4b97e2 0+0
pc: code* c49 0
location: _PDCLIB/assert.c:21
symbol: _PDCLIB_assert_dios

address: heap* 96c75834 0+0
pc: code* 1 1
location: test/c/1.assert.c:5
symbol: main

address: heap* 797b4e39 0+0
pc: code* 1f4 7
location: dios/core/main.cpp:173
symbol: _start

Fig. 7: Displaying a backtrace.

5.3 Inspecting the Stack

As explained in Section 4.3, the control flow of a C

program (or, more generally, any LLVM program) is

tracked by a simple data structure stored in memory

along with other data. This data structure often rep-

resents the best means for a user to locate themselves

within the execution of a program. A so-called backtrace

(or stack trace) is a fundamental program analysis tool.

A backtrace lists each activation record in the (reverse)

order of activation, and constitutes a description of a lo-

cation in the computation of the program7 (an example

is shown in Figure 7).

5.4 Thread Interleaving

As mentioned in Section 2.3, a simulator can precisely

control thread interleaving: the underlying virtual ma-

chine provides means to switch threads at all relevant

points. However, many instruction interleavings have

equivalent effects, and for this reason, allowing threads

to be switched at arbitrary points would be wasteful.

For this reason, DiVM explicitly marks points in the in-

struction stream where threads may be switched, and

this behaviour is carried over to the simulator. These

interrupt points are inserted in such a manner that all

possible behaviours of the program are retained in the

state space. From a simulation point of view, the down-

side is that the interleaving may not be the most intu-

itive, but the reduction in the number of possible states

generally outweighs this, since the user needs to con-

sider fewer runs. To further reduce the number of con-

text switches, a model checker may use some form of

7 This description is necessarily incomplete, being much
more concise than the real representation of the program’s
state. Including additional information improves complete-
ness, but compromises brevity, which is an important strength
of this presentation format.

DivSIM, an Interactive Simulator for LLVM Bitcode 13

partial order reduction, but this is not necessary in a

simulator, since it doesn’t need to explore or store the

entire state space.

5.5 Simulating Counterexamples

There are two major tasks for the simulator in the con-

text of program analysis and verification. The first is to

allow the user to explore program behaviour and read

off details about its executions. The other is to support

verification tools which provide counterexamples to the

user. As detailed in Section 2, it is a difficult task to

analyse problem reports from automated analysis and

verification tools, and a simulator can be very helpful

in this regard. In case of model checkers, the problem

report contains an execution trace: a step-by-step de-

scription of the problematic behaviour. For tools based

on DiVM, this trace is simply a list of 2 types of infor-

mation:

1. The non-deterministic choices made during the ex-

ecution of the program (internally, there is only

one non-deterministic choice operator and all state-

space branching is caused by this operator, includ-

ing thread interleaving).

2. Which of the interrupt points were used in the exe-

cution: the model checker may be able to prove that

a particular interrupt point is not required, and the

simulator needs this information to correctly repro-

duce the counterexample.

Since the program is isolated from the environment,

this list completely and unambiguously describes its en-

tire execution history. When the model checker discov-

ers a problem in the program, it writes this list into a

text file, which the simulator can then load along with

the program.

When the simulator loads a trace, it locks the out-

comes of all non-deterministic choices to follow the

trace. In this mode, stepping through the program

(backwards or forwards) will simply follow the coun-

terexample, unless a particular choice is overridden by

the user. In effect, the user will be guided through the

faulty behaviour of the program, and can easily move

back and forth to locate the cause of the problem (as op-

posed to the symptom, which is what the model checker

reports and may be distinct from the original cause).

In an ideal world, the model checker or other anal-

ysis tool will be directly able to generate a counterex-

ample in the required format. Unfortunately, this is not

always the case in practice, and it is not always desir-

able to extend the analysis tool. An alternative route

is then via DiOS [21], a small portable operating sys-

tem which targets the DiVM language. In this case, the

portability refers to the ability of DiOS to run on dif-

ferent tools, including LLVM-based tools which do not

directly support the DiVM extensions.

As a proof of concept, DiOS has been ported to the

symbolic executor KLEE. This port includes a layer

which emulates DiVM hypercalls on KLEE, including

choose, the non-deterministic choice operator. When

KLEE discovers a counterexample, it will, like most

tools, print a trace that describes how the execution

progressed. The program under test can augment this

trace by calling a special built-in function; the strings

passed to that function will then appear in the coun-

terexample, in execution order. The KLEE port of DiOS
hooks into this mechanism to report the result of every

non-deterministic choice, which in turn makes it possi-

ble to construct a DivSIM-compatible counterexample,

as described above.

Since there are no interrupt points under KLEE

(only sequential programs are supported and loops are

unfolded), this is all the information that is needed.

However, since interrupt points are normally serviced

by a DiOS routine, the same mechanism can be used to

collect interrupt information (on a system where inter-

rupts are relevant).

6 Correctness

Of course, it is desirable for the simulated execution to

correspond to actual execution of the program in its

native environment as closely as possible. In the con-

text of verification, there are two classical criteria to

consider:

1. Any violation of the specification (i.e. any bug that

we care about) that can happen in real execution

will be found and reported by the verification tool.

This is commonly known as soundness.

2. Any violation reported by the tool can be repro-

duced in real execution (at least in principle: ex-

tremely unlikely outcomes are still considered to be

a real concern). This is often described as exact-

ness. In ‘bug-hunting’ (falsification) tools, reports

of problems that can be never triggered in real exe-

cutions are known as false positives.

For a simulator, the two criteria are important, but

not quite satisfactory in themselves: we are interested in

execution history, as much as the outcome. This history

includes all user-observable properties of the program,

like organisation of memory, values of variables at any

given point in execution, etc. Unfortunately, there is

no obvious, accessible criterion which would quantify

how similar the real and the simulated execution traces

14 Petr Ročkai, Jǐŕı Barnat

are. Clearly, there are many programs that are indis-

tinguishable from each other based solely on the above

2 criteria but still produce very different computation

histories. We will discuss this problem in more detail in

Section 6.2.

6.1 Soundness and Exactness

Except for possible implementation bugs, the simulator

itself does not introduce any new sources of unsound-

ness (or inexactness). Instead, it inherits the properties

of DiVM (and to a lesser extent, DiOS).

Regarding the soundness and exactness of DiVM,

we make the following observations:

1. The most obvious source of possible problems is that

DiVM does not interpret the machine code that will

be executed natively: there is an additional trans-

lation step from the LLVM IR to native code. Any

difference in behaviour of the program introduced at

this stage is out of reach of DiVM, and hence also

of DivSIM.

Perhaps less obviously, this also covers different

understanding of the semantics of LLVM instruc-

tions, which are only documented informally and

hence subject to interpretation. If the code gener-

ator (which translates LLVM to machine code) in-

terprets an instruction differently from DiVM, the

simulated behaviour may be different from the real

behaviour.

2. Undefined behaviour in C (or C++) programs may

cause the compiler to significantly change the be-

haviour of the program. On one hand, DiVM works

with this altered program and will detect anoma-

lies caused by such compiler-induced changes. Un-

fortunately, such changes can also affect consistency

checks performed by the program itself, e.g. asser-

tions. In this sense, an actual safety violation may

remain unreported because the assertion itself was

removed or altered by the compiler.

3. The FPU modelled by DiVM is limited and pro-

grams which rely on non-default rounding modes or

FPU exceptions are not handled soundly.

On the other hand, the following issues may appear

as concerning, but are in fact addressed either directly

by DiVM or in the wider ecosystem. These results apply

more or less transparently to DivSIM.

4. While DiVM itself does not handle relaxed mem-

ory models, DiOS implements an emulation thereof

based on reorder buffers (with user-selectable

depth). The bitcode loader can be instructed to au-

tomatically translate memory access instructions to

use this emulation layer. The current implementa-

tion provides the most common weak models (TSO

and x86).

5. Program behaviour may depend on numeric values

of pointers, e.g. because they are used as keys in

search trees or hash tables, or due to program bugs.

Optionally, DiVM can report any such behaviours

as errors, and DiOS provides an abstract domain

(in the sense of Section 4.4) which models numeric

values of pointers symbolically. Using the latter, the

full state space, including dependencies on numeric

pointer values, can be explored faithfully.

6. The optimizer may change the behaviour of the pro-

gram. Except as indicated in points 1 and 2 above,

this is not a major concern, since the bulk of the op-

timisation is performed as an LLVM → LLVM trans-

formation and the post-optimisation bitcode can be

loaded into DiVM (and hence into the simulator), at

the expense of some user comfort.

While strictly speaking, DiOS is an optional compo-

nent (the environment can be modelled by the user in

its entirety, if desired), it is almost always used, even if

the program under test does not use POSIX APIs: the

standard C library is also provided by DiOS, including

fundamental primitives like malloc and free. Like with

DiVM, the main source of problems is the interpretation

of the relevant informal specifications (ISO C, POSIX).

Fundamentally, it is impossible to guarantee that the

behaviour of DiOS will match any particular native im-

plementation. To minimize the risks, DiOS takes the

following approach:

1. Perform strict validation of inputs and report any

violations of documented preconditions as errors.

While this is a form of inexactness (programs that

work correctly when executed in a particular native

environment may be rejected), this approach pre-

vents much worse problems with unsoundness (the

same program would not work correctly in a differ-

ent native environment).

Examples of such precondition checks are free (ac-

cepts only pointers which were returned by malloc

and not yet freed – in this case, DiOS relies on DiVM
to keep track of pointer validity), overlap checks

in memcpy and strcpy, consistency checks in the

pthread API, etc.

2. Non-deterministically simulate possible error condi-

tions. This is again a possible source of inexactness,

especially in cases where a particular failure is ruled

out by external guarantees (e.g. the system is de-

signed in such a way that there is always sufficient

memory and hence malloc never fails). Conversely,

DivSIM, an Interactive Simulator for LLVM Bitcode 15

incomplete coverage of error conditions is a possible

source of unsoundness.

Especially the second category is rather open-ended,

and is not covered completely. In this sense, DiOS is

unsound: for instance, in native execution, an arbitrary

signal may arrive at any time, the content of the file sys-

tem may change in arbitrary ways at arbitrary times,

the system clock may move arbitrarily during execu-

tion, and so on. Many of these cases are either not cov-

ered at all (e.g. arbitrary incoming signals: those would

need to be modelled explicitly by the user) or are not

enabled by default due to the high rate of false positives

(or rather true positives that are nonetheless not inter-

esting to most users and most programs, e.g. arbitrary

clock jumps or spontaneous file system changes).

6.2 Execution History

As mentioned earlier, soundness and exactness are not

the only criteria that affect usability (and usefulness)

of a simulator. Since we are not aware of any formal

mechanism which could usefully model the correspon-

dence between the real and the simulated execution, we

will limit ourselves to informal observations about the

possible problems and their impact.

6.2.1 Commutativity

Some operations in the program are commutative, and

the outcome does not depend on their ordering. In se-

quential programs, this is mostly a hypothetical prob-

lem, since the main source of operation re-ordering is

the compiler, which is the same for both the simulator

and for real execution. Some care must be taken to use

the same compiler flags for best results (or even better,

generate the native code from the same bitcode).

In concurrent programs, the situation is nearly re-

versed: a huge number of commutations (between dif-

ferent threads) can happen in both real execution and

in the simulation. Trying to match them 1:1 is both

hopeless and unhelpful – in this case, the soundness and

exactness criteria are the best we can hope for (i.e. the

simulated execution has some result-equivalent coun-

terpart in the real program, and vice versa). Informally,

this alone should give a good approximation of execu-

tion history, since an assertion can be placed at any

point of the program and if the simulator is sound and

exact, the assertion will be reachable iff it is reachable in

real execution. Unfortunately, adding the assertion can,

in principle, change the trace arbitrarily. In practice, it

will almost always only cause a small local perturba-

tion.

6.2.2 Execution Model

The instruction set of the simulator (LLVM) is differ-

ent from the instruction set used in the real execution

(x86 64, arm64, etc.). Since the latter is obtained from

the former, and LLVM is already quite granular, there

is a close correspondence between the two programs.

However, we again only have the high-level guarantees

about behaviour correspondence. The code generator

(the component responsible for translating LLVM in-

structions into native machine instructions) can, and

does, perform additional optimisations, which include

instruction reordering, splitting, and combining. Those

effects can be observed by the user, though they are

unlikely to be important in most cases.

The machine model of LLVM (and consequently of

the simulator) is different than the one used in real ex-

ecution: all contemporary CPUs are register machines

with a fixed set of registers. This means that values

need to be moved in and out of registers to perform

operations on them, even in cases where the original

LLVM bitcode does not indicate such movement of val-

ues. Like with the above, this is usually of little practical

consequence to the user.

Finally, register spills can also interfere with con-

currency, where a spill (not present in the LLVM code)

can be observed by another thread. If soundness is as-

sumed, the corresponding trace in the simulator will

always end with an error before the discrepancy can

be observed.8 The soundness is, however, dependent on

the behaviour of the code generator: we cannot rule out

that a code generator will emit incorrect machine code

(one with observable spills) from correct LLVM bitcode

(where the affected memory location is updated and

accessed correctly with respect to concurrency).

6.2.3 Memory Layout

The last major area where the simulated program and

the natively executed program differ is the layout of

the data stored in memory, with the most important

difference concerning the organisation of the stack. In

the simulator, the stack is organised as a linked data

structure with each local variable allocated as separate

object referenced from the main stack through a pointer

(the layout is discussed in more detail in Section 3.2).

In native execution, the stack is a flat array of bytes,

with boundaries between activation records and local

8 The typical cause will be an out-of-bound memory access
on a stack-allocated variable. In real execution, this is not in
itself an error, but will be detected and reported by DiVM,
since each local variable is allocated in its own memory object
(as discussed in Section 3).

16 Petr Ročkai, Jǐŕı Barnat

variables implied by the code. Neither of those bound-

aries is made explicit in memory or enforced in any way,

though a debugger can reconstruct them using debug

metadata (at least as long as the stack is consistent).

From user perspective, this means that variable val-

ues can appear in unexpected locations in memory.

However, since the representation used by the simula-

tor is strictly more structured than the one used during

native execution, we believe that it does not take signif-

icant effort on the part of the user to locate the desired

values. Nonetheless, it is still a clear discrepancy that

the user needs to take into account when working with

DivSIM.

Additionally, like in the case of register spills dis-

cussed in Section 6.2.2, the different organisation can

lead to different behaviour if assumptions made by the

compiler are violated in the program. Again, assum-

ing soundness, the simulator will truncate any affected

traces by generating an error state, making the incon-

sistent behaviour inaccessible.

A second layout-related issue is the numeric values

of pointers, which will differ between the simulation and

real execution. However, these often differ even between

individual native executions (even with fixed inputs)

due to intentional randomization. For this reason, we

do not consider this to be a major problem.

7 Implementation

DivSIM is distributed as part of the DIVINE 4 toolkit

and is available through the divine sim subcommand.

All relevant source code is available online,9 under a

permissive open source licence. Additional details about

the user interface and user interaction in particular can

be found in the DIVINE 4 manual10.

7.1 User Interface

The data structures and most of the code are inde-

pendent of a particular user interface. In fact, two user

interfaces exist for the simulator. The primary interface

is command-driven, similar to terminal-based symbolic

debuggers like gdb. The command-line parser and other

interface-specific code entails approximately 800 lines of

C++. Additionally, a third-party graphical interface is

also available.11

9 https://divine.fi.muni.cz/download.html
10 https://divine.fi.muni.cz/manual.html
11 The source code of the graphical user interface is available
from the supplementary materials page at https://divine.

fi.muni.cz/2021/sim/.

The command interface uses meta variables exten-

sively: each such meta variable holds a reference to a

single debug node (cf. Section 3.5). There are two basic

types of meta variables, static and dynamic.

Static variables always point to the same debug

node, even as the program executes and the content of

its memory changes. Since objects in the DiVM mem-

ory are persistent (not mutable), this type of variable

simply points to such a persistent, immutable object.

Static meta variables have names starting with a # sign,

e.g. #start.

Dynamic variables reflect the current state of the

program at any given time. The debug nodes referenced

by those variables are refreshed every time the program

mutates its memory, so that they always point to an up-

to-date copy of the persistent memory object (in other

words, they always refer to the current program state).

These variables are prefixed with a $ sign, e.g. $frame.

7.2 Programming Language Support

Our simulator design is, to a large degree, independent

of the particular high-level language in which the sim-

ulated program was developed. The structure of the

program is described in the debug info metadata in

sufficient detail to provide precise and readable infor-

mation to the user. This is in contrast to tools like gdb

and lldb [15] which mostly rely on evaluating C and/or

C++ statements for presenting the program data. That

is, the user is allowed to type in a C or C++ expres-

sion to be evaluated and the result displayed. The major

downside is that if the high-level language support is in-

complete (like it is the case with C++ support in gdb),

it becomes much harder to obtain certain values with-

out resorting to very low-level means (printing bytes at

particular addresses). Consequently, the amount of im-

plementation work required to support a programming

language in a debugger can be substantial.12

On the other hand, the debug graph implemented

in our simulator (see Section 3.5) is language-neutral,

and hence the features derived from this graph are in-

dependent of the original programming language. For

this reason, we consider the debug graph to be an im-

portant contribution: it can be built from LLVM debug

metadata in a comparatively small amount of code, but

nonetheless provides a very convenient interface.

12 We speculate that this is the primary reason why inter-
active simulators (and debuggers in general) are so scarce.

DivSIM, an Interactive Simulator for LLVM Bitcode 17

7.3 Application Programming Interface

An important aspect of the presented simulator is that

it is not just a standalone program, but also a re-usable

library. The primary API is in C++ and has two levels:

1. a low-level interface which builds on DiVM and is

available as a standalone library, libdivine-dbg

and provides the following components:

a. an interface to construct and explore the debug

graph associated with a particular program state

(as captured in a DiVM snapshot),

b. a stepper, which implements the low-level

instruction- and statement-level single stepping,

along with the scaffolding required to implement

breakpoints,

c. utility functions – printing (formatting) in-

structions, export of the debug graph into the

graphviz dot language, comparison (diffing) of

debug nodes and so on,

2. a higher-level interface which makes the entire sim-

ulator available as a library, similar to how a

user interacts with it (this interface is provided by

libdivine-sim).

Of course, the high-level interface hooks into the

low-level one where appropriate: for instance it provides

low-level access to the debug node of the currently ac-

tive stack frame, which can then be accessed using the

low-level interface and used as a starting point for ex-

ploring the debug graph. Same for global variables and

so on. The high-level API also gives the programmer

access to each user-level command for simple automa-

tion tasks, with the user-directed output sent to a text

stream of programmer’s choosing. This makes it easy

to hide, post-process or redirect the output, as needed.

Since the API is quite simple, only exposes a few

classes (perhaps most importantly the debug node

class), and can be used without using advanced C++

features (templates, smart pointers and so on), it is eas-

ily exported to object-oriented scripting languages, like

Python.13

8 Evaluation

To demonstrate robustness and quantify performance

of the simulator, we have executed it across a collection

of C and C++ test programs, in two modes:

13 At the time of this writing, work is in progress to provide
simple Python bindings for the C++ API, via Boost.Python.
We believe the Python API will make DivSIM more accessible
to 3rd-party developers.

1. For the 608 test cases which contain a bug (and

hence a counterexample), we have loaded the trace

into the simulator, stepped to the end and printed a

backtrace. We have then checked that the simulator

reached the same error that was reported by the

model checker.

2. The remaining 2090 test programs do not contain

a bug, and hence also no counterexample to load

and follow. On each of these programs, we have per-

formed two random walks, one which consists of first

10000 atomic steps (atomic from the point of con-

currency, as outlined in Section 5.1) and another

which spanned 100000 LLVM instructions. In deter-

ministic, sequential programs, the random walk ob-

viously follows the only available execution. In pro-

grams with non-determinism (either due to concur-

rency, or due to automatic data abstraction), the

result of each choice is simply picked at random (us-

ing a pseudo-random generator with a fixed seed, so

that the same walk is easily reproduced).

The programs are sorted into these categories:

1. abstract: abstract data domains (Section 4.4),

2. bricks: unit tests of a C++ utility library,

3. demo: simple programs demonstrating various bugs,

4. dios: test cases for DiOS APIs,

5. pv264: assignments in an advanced C++ course,

6. lang: language feature tests for C and C++,

7. libc: tests for features of the standard C library,

8. libcxx: upstream unit tests from libc++,

9. posix: POSIX APIs (files, processes, signals, etc.),

10. pthread: POSIX threads,

11. svcomp: a selection of SV-COMP test cases (includ-

ing symbolic data, Section 4.5),

12. sym: test cases for handling of symbolic values,

13. undef: detection of undefined values in C programs,

14. vm: virtual machine interface (hypercalls),

15. weakmem: threading with relaxed memory models.

8.1 Trace Statistics

We have collected some statistics about these runs,

summarized in Table 1. The tabulated times are wall

clock times when running on a contemporary CPU with

a 2GHz base clock. The times include startup and load-

ing of the bitcode, but not compilation of the source

code (i.e. the input was a pre-compiled bitcode file).

The main takeaways are:

1. The average times are favourable in almost all cat-

egories, for both the random walks and for coun-

terexamples. Considering the length of the walks

18 Petr Ročkai, Jǐŕı Barnat

and counterexamples, there would be hardly any de-

lays when responding to stepping commands. One

notable exception is the pv264 category, where the

average runtime is significantly longer. Overall, we

note that C++ programs take a longer time to pro-

cess (though part of this effect is also due to longer

load times caused by larger bitcode files).

2. The maximal times for random walks are generally

well-behaved as well. A notable case is libcxx where

the slowest random walk along 100000 instructions

took over 20 seconds, averaging to about 4500 in-

structions per second (in interactive use, this could

translate to a noticeable delay for longer steps). The

other notable figure appears in the category pv264,

though in this case, the maximum is in line with the

category average.

The times for random walks that counted atomic

steps are more varied, reflecting significant variation

in the length of such steps. The trends are similar,

though a few additional categories show fairly long

maximal times (namely bricks, dios and sym).

3. Counterexample lengths span 3 magnitudes, though

even very long counterexamples (millions of instruc-

tions) are processed in what we believe is a reason-

able time (about 2 minutes, compared to about 20

minutes it takes the model checker to find and gener-

ate the counterexample). The overall average coun-

terexample length is not very far from the 100000 in-

structions which we have used for the random walks

of correct programs. This makes the average time in

the correct and incorrect case roughly comparable,

indicating that processing counterexamples is in fact

marginally cheaper than walking the state space at

random.

8.2 Debug Graph Statistics

In addition to trace lengths and timing information,

we have collected information about the size of debug

graphs at the point where the programs stopped (that is

either at the end of the counterexample, or after 100000

instructions). Since the sizes only span a fairly small

range of values, we have plotted them in a histogram in

Figure 8. The debug graph size indicates the number of

distinct memory nodes (components were not counted

separately) for which it was possible to derive type in-

formation (that is, untyped vertices were not counted).

By far the most common size was 9 nodes, which

corresponds to a standard C or C++ program that has

terminated: in this case, only kernel data remains reach-

able. This was the outcome for 1059 programs, i.e. ap-

proximately half of the ‘correct’ programs. The largest

recorded graph had 55 nodes and was generated from

a pthread test case (in fact, all debug graphs with 40

or more nodes were generated by threaded programs).

0

100

200

300

400

500

0 10 20 30 40 50 60

n
u
m
b
er

o
f
p
ro
gr
a
m
s

number of nodes

Fig. 8: Histogram of debug graph sizes. Small values

have been exaggerated for readability (there is only 1

program with debug graph with 55 nodes) and the bar

for 9 nodes has been cut off (the actual value is 1059

programs).

9 Conclusion

We have described and implemented a new approach to

interactive analysis of real, multi-threaded C and C++

programs. In the wider context of automated verifica-

tion and, in particular, model checking of software, we

need every idea and every technique that can help us

in the uphill battle against the complexity of the real

world. We believe that the ideas presented in this paper

are a piece of that puzzle, and will play a non-negligible

role in the future of interactive tools in this space.

On the practical side, the inclusion of an interactive

simulator has made DIVINE 4 substantially more useful

(compared to earlier versions).14 Additionally, follow-

ing in the footsteps of DiOS, the first truly standalone,

reusable component coming from the DIVINE ecosys-

tem, DivSIM can be combined with existing LLVM-

based tools. We hope this will foster inter-tool com-

patibility and cooperation in the broader LLVM space.

14 Supported by anecdotal evidence from working with stu-
dents, both individually and in a validation & verification
course.

DivSIM, an Interactive Simulator for LLVM Bitcode 19

category correct avg(t1) max(t1) avg(t2) max(t2) c.e. avg(len) max(len) avg(t) max(t)

abstract 39 4.13 7.80 4.28 7.00 10 14129 57782 2.83 6.39
bricks 368 9.12 31.40 6.19 16.44 0 - - - -
demo 0 - - - - 6 17908 58104 6.97 29.52
dios 25 2.76 35.07 1.70 5.46 15 2598 8298 2.34 4.27
pv264 13 52.75 70.61 33.91 47.81 0 - - - -
lang 55 2.61 16.38 2.54 4.39 32 4130 21138 2.35 4.61
libc 23 1.97 3.18 2.22 3.86 8 2670 3825 2.12 2.45
libcxx 902 10.16 68.69 4.75 22.35 8 14900 29559 7.27 13.55
posix 107 2.52 13.53 2.28 5.32 0 - - - -
pthread 121 2.01 2.75 2.07 3.04 22 3559 8082 2.02 2.51
svcomp 228 4.10 28.46 2.89 6.53 276 121756 4101281 3.48 121.39
sym 168 4.41 63.56 3.01 4.79 102 5548 28159 2.80 3.79
undef 10 1.89 2.11 1.97 2.38 29 107 204 1.88 2.17
vm 21 2.67 11.32 2.22 3.65 33 1453 7293 2.38 3.99
weakmem 10 2.61 3.20 1.84 2.41 67 360394 522652 2.65 4.49
total 2090 7.61 4.37 608 97206 3.05

Table 1. Summary of benchmark data. The columns ‘correct’ and ‘c.e.’ give the number of test cases of the

respective type in the given category. For ‘correct’ test cases, t1 gives the time required to perform 10000 atomic

steps and t2 the time to run 100000 instructions. The ‘len’ columns gives the length of the counterexample in

instructions (average and maximum).

Finally, the simple, compact and universal counterex-

ample format produced by DiVM and consumed by Di-
vSIM has the potential to further improve interoperabil-

ity of existing tools. Having adapted KLEE to generate

DivSIM-compatible traces is the first step in that direc-

tion.

References

1. Parosh Aziz Abdulla, Stavros Aronis, Mo-

hamed Faouzi Atig, Bengt Jonsson, Carl Leonards-

son, and Konstantinos Sagonas. Stateless model

checking for TSO and PSO. Acta Informatica, 54

(8):789–818, 2017. doi: 10.1007/s00236-016-0275-0.

2. Thomas Ball, Mayur Naik, and Sriram K. Raja-

mani. From symptom to cause: localizing errors

in counterexample traces. In POPL, pages 97–105.

ACM, 2003.

3. Thomas Ball, Byron Cook, Vladimir Levin, and Sri-

ram K. Rajamani. SLAM and static driver verifier:

Technology transfer of formal methods inside mi-

crosoft. In IFM, LNCS. Springer, 2004.

4. Jiri Barnat, Jan Beran, Lubos Brim, Tomas Kra-

tochv́ıla, and Petr Ročkai. Tool chain to support

automated formal verification of avionics Simulink

designs. In FMICS, number 7437 in LNCS, pages

78–92. Springer, 2012.

5. Samik Basu, Diptikalyan Saha, and Scott A.

Smolka. Getting to the root of the problem: Fo-

cus statements for the analysis of counter-examples.

2012.

6. Gerd Behrmann, Alexandre David, and Kim G.

Larsen. A tutorial on uppaal. In SFM, 2004.

7. Cristian Cadar, Daniel Dunbar, and Dawson R.

Engler. KLEE: Unassisted and automatic gener-

ation of high-coverage tests for complex systems

programs. In OSDI, pages 209–224. USENIX As-

sociation, 2008.

8. Marek Chalupa, Tomáš Jašek, Lukáš Tomovič,

Martin Hruška, Veronika Šoková, Pauĺına

Ayaziová, Jan Strejček, and Tomáš Vojnar.

Symbiotic 7: Integration of predator and more. In

TACAS, pages 413–417, Cham, 2020. Springer.

ISBN 978-3-030-45237-7.

9. Alex Groce, Daniel Kroening, and Flavio Lerda.

Understanding counterexamples with explain. In

Computer Aided Verification, LNCS, pages 453–

456. Springer, 2004.

10. Henning Günther, Alfons Laarman, and Georg

Weissenbacher. Vienna Verification Tool: IC3

for parallel software (competition contribution).

In TACAS, pages 954–957, 2016. doi: 10.1007/

978-3-662-49674-9 69.

11. Ruben Kleiman, Mike Brayshaw, Marc Eisenstadt,

and Marc Eisenstadt. Tales of debugging from the

front lines, 1993.

12. Michalis Kokologiannakis, Azalea Raad, and Viktor

Vafeiadis. Model checking for weakly consistent li-

braries. In PLDI, PLDI 2019, page 96–110, New

York, 2019. ACM. doi: 10.1145/3314221.3314609.

13. Henrich Lauko, Petr Ročkai, and Jǐŕı Barnat. Sym-

bolic computation via program transformation. In

20 Petr Ročkai, Jǐŕı Barnat

Theoretical Aspects of Computing – ICTAC, pages

313–332, Cham, 2018. Springer.

14. Henrich Lauko, Vladimı́r Štill, Petr Ročkai, and Jǐŕı

Barnat. Extending DIVINE with symbolic verifica-

tion using SMT. In TACAS, pages 204–208, Cham,

2019. Springer.

15. Keith Lee. Using LLDB, pages 415–434. Apress,

Berkeley, CA, 2013. ISBN 978-1-4302-5051-7.

16. Axel Legay, Dirk Nowotka, Danny Bøgsted

Poulsen, and Louis-Marie Tranouez. Statistical

model checking of llvm code. In Formal Methods,

pages 542–549, Cham, 2018. Springer.

17. Jeff Magee. Behavioral analysis of software archi-

tectures using LTSA. In ICSE, 1999.

18. Nicholas Nethercote and Julian Seward. Valgrind:

a framework for heavyweight dynamic binary in-

strumentation. In PLDI, 2007.

19. Petr Ročkai and Jǐŕı Barnat. A simulator for llvm

bitcode. In Formal Methods for Industrial Critical

Systems, pages 127–142, Cham, 2019. Springer.

20. Petr Ročkai, Vladimı́r Štill, Ivana Černá, and Jǐŕı

Barnat. DiVM: Model checking with LLVM and

graph memory. Journal of Systems and Software,

143:1 – 13, 2018. doi: 10.1016/j.jss.2018.04.026.

21. Petr Ročkai, Zuzana Baranová, Jan Mrázek,

Kataŕına Kejstová, and Jǐŕı Barnat. Reproducible

execution of POSIX programs with DiOS. Soft-

ware and Systems Modeling, pages 1–20, 10 2020.

doi: 10.1007/s10270-020-00837-y.

22. Richard Stallman, Roland Pesch, and Stan Shebs.

Debugging with gdb. 2010.

23. The LLVM Project. LLVM language reference man-

ual, 2016. URL http://llvm.org/docs/LangRef.

html.

24. Ana-Maria Visan, Kapil Arya, Gene Cooperman,

and Tyler Denniston. URDB: a universal reversible

debugger based on decomposing debugging histo-

ries. In PLOS ’11, 2011.

25. Willem Visser and Alex Groce. What went wrong:

Explaining counterexamples. In SPIN, LNCS,

pages 121–135. Springer, 2002.

