//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This pass does misc. AMDGPU optimizations on IR before instruction /// selection. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUTargetMachine.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IRBuilder.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/Utils/IntegerDivision.h" #define DEBUG_TYPE "amdgpu-codegenprepare" using namespace llvm; namespace { static cl::opt WidenLoads( "amdgpu-codegenprepare-widen-constant-loads", cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(false)); static cl::opt Widen16BitOps( "amdgpu-codegenprepare-widen-16-bit-ops", cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(true)); static cl::opt UseMul24Intrin( "amdgpu-codegenprepare-mul24", cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(true)); // Legalize 64-bit division by using the generic IR expansion. static cl::opt ExpandDiv64InIR( "amdgpu-codegenprepare-expand-div64", cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(false)); // Leave all division operations as they are. This supersedes ExpandDiv64InIR // and is used for testing the legalizer. static cl::opt DisableIDivExpand( "amdgpu-codegenprepare-disable-idiv-expansion", cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(false)); class AMDGPUCodeGenPrepare : public FunctionPass, public InstVisitor { const GCNSubtarget *ST = nullptr; AssumptionCache *AC = nullptr; DominatorTree *DT = nullptr; LegacyDivergenceAnalysis *DA = nullptr; Module *Mod = nullptr; const DataLayout *DL = nullptr; bool HasUnsafeFPMath = false; bool HasFP32Denormals = false; /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to /// binary operation \p V. /// /// \returns Binary operation \p V. /// \returns \p T's base element bit width. unsigned getBaseElementBitWidth(const Type *T) const; /// \returns Equivalent 32 bit integer type for given type \p T. For example, /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> /// is returned. Type *getI32Ty(IRBuilder<> &B, const Type *T) const; /// \returns True if binary operation \p I is a signed binary operation, false /// otherwise. bool isSigned(const BinaryOperator &I) const; /// \returns True if the condition of 'select' operation \p I comes from a /// signed 'icmp' operation, false otherwise. bool isSigned(const SelectInst &I) const; /// \returns True if type \p T needs to be promoted to 32 bit integer type, /// false otherwise. bool needsPromotionToI32(const Type *T) const; /// Promotes uniform binary operation \p I to equivalent 32 bit binary /// operation. /// /// \details \p I's base element bit width must be greater than 1 and less /// than or equal 16. Promotion is done by sign or zero extending operands to /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and /// truncating the result of 32 bit binary operation back to \p I's original /// type. Division operation is not promoted. /// /// \returns True if \p I is promoted to equivalent 32 bit binary operation, /// false otherwise. bool promoteUniformOpToI32(BinaryOperator &I) const; /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. /// /// \details \p I's base element bit width must be greater than 1 and less /// than or equal 16. Promotion is done by sign or zero extending operands to /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. /// /// \returns True. bool promoteUniformOpToI32(ICmpInst &I) const; /// Promotes uniform 'select' operation \p I to 32 bit 'select' /// operation. /// /// \details \p I's base element bit width must be greater than 1 and less /// than or equal 16. Promotion is done by sign or zero extending operands to /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the /// result of 32 bit 'select' operation back to \p I's original type. /// /// \returns True. bool promoteUniformOpToI32(SelectInst &I) const; /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' /// intrinsic. /// /// \details \p I's base element bit width must be greater than 1 and less /// than or equal 16. Promotion is done by zero extending the operand to 32 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the /// shift amount is 32 minus \p I's base element bit width), and truncating /// the result of the shift operation back to \p I's original type. /// /// \returns True. bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; bool isI24(Value *V, unsigned ScalarSize) const; bool isU24(Value *V, unsigned ScalarSize) const; /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. /// SelectionDAG has an issue where an and asserting the bits are known bool replaceMulWithMul24(BinaryOperator &I) const; /// Perform same function as equivalently named function in DAGCombiner. Since /// we expand some divisions here, we need to perform this before obscuring. bool foldBinOpIntoSelect(BinaryOperator &I) const; bool divHasSpecialOptimization(BinaryOperator &I, Value *Num, Value *Den) const; int getDivNumBits(BinaryOperator &I, Value *Num, Value *Den, unsigned AtLeast, bool Signed) const; /// Expands 24 bit div or rem. Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, bool IsDiv, bool IsSigned) const; Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, unsigned NumBits, bool IsDiv, bool IsSigned) const; /// Expands 32 bit div or rem. Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den) const; Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den) const; void expandDivRem64(BinaryOperator &I) const; /// Widen a scalar load. /// /// \details \p Widen scalar load for uniform, small type loads from constant // memory / to a full 32-bits and then truncate the input to allow a scalar // load instead of a vector load. // /// \returns True. bool canWidenScalarExtLoad(LoadInst &I) const; public: static char ID; AMDGPUCodeGenPrepare() : FunctionPass(ID) {} bool visitFDiv(BinaryOperator &I); bool visitXor(BinaryOperator &I); bool visitInstruction(Instruction &I) { return false; } bool visitBinaryOperator(BinaryOperator &I); bool visitLoadInst(LoadInst &I); bool visitICmpInst(ICmpInst &I); bool visitSelectInst(SelectInst &I); bool visitIntrinsicInst(IntrinsicInst &I); bool visitBitreverseIntrinsicInst(IntrinsicInst &I); bool doInitialization(Module &M) override; bool runOnFunction(Function &F) override; StringRef getPassName() const override { return "AMDGPU IR optimizations"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); // FIXME: Division expansion needs to preserve the dominator tree. if (!ExpandDiv64InIR) AU.setPreservesAll(); } }; } // end anonymous namespace unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { assert(needsPromotionToI32(T) && "T does not need promotion to i32"); if (T->isIntegerTy()) return T->getIntegerBitWidth(); return cast(T)->getElementType()->getIntegerBitWidth(); } Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { assert(needsPromotionToI32(T) && "T does not need promotion to i32"); if (T->isIntegerTy()) return B.getInt32Ty(); return FixedVectorType::get(B.getInt32Ty(), cast(T)); } bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { return I.getOpcode() == Instruction::AShr || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; } bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { return isa(I.getOperand(0)) ? cast(I.getOperand(0))->isSigned() : false; } bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { if (!Widen16BitOps) return false; const IntegerType *IntTy = dyn_cast(T); if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) return true; if (const VectorType *VT = dyn_cast(T)) { // TODO: The set of packed operations is more limited, so may want to // promote some anyway. if (ST->hasVOP3PInsts()) return false; return needsPromotionToI32(VT->getElementType()); } return false; } // Return true if the op promoted to i32 should have nsw set. static bool promotedOpIsNSW(const Instruction &I) { switch (I.getOpcode()) { case Instruction::Shl: case Instruction::Add: case Instruction::Sub: return true; case Instruction::Mul: return I.hasNoUnsignedWrap(); default: return false; } } // Return true if the op promoted to i32 should have nuw set. static bool promotedOpIsNUW(const Instruction &I) { switch (I.getOpcode()) { case Instruction::Shl: case Instruction::Add: case Instruction::Mul: return true; case Instruction::Sub: return I.hasNoUnsignedWrap(); default: return false; } } bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { Type *Ty = I.getType(); const DataLayout &DL = Mod->getDataLayout(); int TySize = DL.getTypeSizeInBits(Ty); Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I); } bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { assert(needsPromotionToI32(I.getType()) && "I does not need promotion to i32"); if (I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SRem || I.getOpcode() == Instruction::URem) return false; IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = getI32Ty(Builder, I.getType()); Value *ExtOp0 = nullptr; Value *ExtOp1 = nullptr; Value *ExtRes = nullptr; Value *TruncRes = nullptr; if (isSigned(I)) { ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); } else { ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); } ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); if (Instruction *Inst = dyn_cast(ExtRes)) { if (promotedOpIsNSW(cast(I))) Inst->setHasNoSignedWrap(); if (promotedOpIsNUW(cast(I))) Inst->setHasNoUnsignedWrap(); if (const auto *ExactOp = dyn_cast(&I)) Inst->setIsExact(ExactOp->isExact()); } TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); I.replaceAllUsesWith(TruncRes); I.eraseFromParent(); return true; } bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { assert(needsPromotionToI32(I.getOperand(0)->getType()) && "I does not need promotion to i32"); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); Value *ExtOp0 = nullptr; Value *ExtOp1 = nullptr; Value *NewICmp = nullptr; if (I.isSigned()) { ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); } else { ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); } NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); I.replaceAllUsesWith(NewICmp); I.eraseFromParent(); return true; } bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { assert(needsPromotionToI32(I.getType()) && "I does not need promotion to i32"); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = getI32Ty(Builder, I.getType()); Value *ExtOp1 = nullptr; Value *ExtOp2 = nullptr; Value *ExtRes = nullptr; Value *TruncRes = nullptr; if (isSigned(I)) { ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); } else { ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); } ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); I.replaceAllUsesWith(TruncRes); I.eraseFromParent(); return true; } bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( IntrinsicInst &I) const { assert(I.getIntrinsicID() == Intrinsic::bitreverse && "I must be bitreverse intrinsic"); assert(needsPromotionToI32(I.getType()) && "I does not need promotion to i32"); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = getI32Ty(Builder, I.getType()); Function *I32 = Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); Value *LShrOp = Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); Value *TruncRes = Builder.CreateTrunc(LShrOp, I.getType()); I.replaceAllUsesWith(TruncRes); I.eraseFromParent(); return true; } unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, unsigned ScalarSize) const { KnownBits Known = computeKnownBits(Op, *DL, 0, AC); return ScalarSize - Known.countMinLeadingZeros(); } unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, unsigned ScalarSize) const { // In order for this to be a signed 24-bit value, bit 23, must // be a sign bit. return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); } bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { return ScalarSize >= 24 && // Types less than 24-bit should be treated // as unsigned 24-bit values. numBitsSigned(V, ScalarSize) < 24; } bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { return numBitsUnsigned(V, ScalarSize) <= 24; } static void extractValues(IRBuilder<> &Builder, SmallVectorImpl &Values, Value *V) { auto *VT = dyn_cast(V->getType()); if (!VT) { Values.push_back(V); return; } for (int I = 0, E = VT->getNumElements(); I != E; ++I) Values.push_back(Builder.CreateExtractElement(V, I)); } static Value *insertValues(IRBuilder<> &Builder, Type *Ty, SmallVectorImpl &Values) { if (Values.size() == 1) return Values[0]; Value *NewVal = UndefValue::get(Ty); for (int I = 0, E = Values.size(); I != E; ++I) NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); return NewVal; } bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { if (I.getOpcode() != Instruction::Mul) return false; Type *Ty = I.getType(); unsigned Size = Ty->getScalarSizeInBits(); if (Size <= 16 && ST->has16BitInsts()) return false; // Prefer scalar if this could be s_mul_i32 if (DA->isUniform(&I)) return false; Value *LHS = I.getOperand(0); Value *RHS = I.getOperand(1); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Intrinsic::ID IntrID = Intrinsic::not_intrinsic; // TODO: Should this try to match mulhi24? if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { IntrID = Intrinsic::amdgcn_mul_u24; } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { IntrID = Intrinsic::amdgcn_mul_i24; } else return false; SmallVector LHSVals; SmallVector RHSVals; SmallVector ResultVals; extractValues(Builder, LHSVals, LHS); extractValues(Builder, RHSVals, RHS); IntegerType *I32Ty = Builder.getInt32Ty(); FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); for (int I = 0, E = LHSVals.size(); I != E; ++I) { Value *LHS, *RHS; if (IntrID == Intrinsic::amdgcn_mul_u24) { LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); } else { LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); } Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); if (IntrID == Intrinsic::amdgcn_mul_u24) { ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType())); } else { ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType())); } } Value *NewVal = insertValues(Builder, Ty, ResultVals); NewVal->takeName(&I); I.replaceAllUsesWith(NewVal); I.eraseFromParent(); return true; } // Find a select instruction, which may have been casted. This is mostly to deal // with cases where i16 selects were promoted here to i32. static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { Cast = nullptr; if (SelectInst *Sel = dyn_cast(V)) return Sel; if ((Cast = dyn_cast(V))) { if (SelectInst *Sel = dyn_cast(Cast->getOperand(0))) return Sel; } return nullptr; } bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { // Don't do this unless the old select is going away. We want to eliminate the // binary operator, not replace a binop with a select. int SelOpNo = 0; CastInst *CastOp; // TODO: Should probably try to handle some cases with multiple // users. Duplicating the select may be profitable for division. SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); if (!Sel || !Sel->hasOneUse()) { SelOpNo = 1; Sel = findSelectThroughCast(BO.getOperand(1), CastOp); } if (!Sel || !Sel->hasOneUse()) return false; Constant *CT = dyn_cast(Sel->getTrueValue()); Constant *CF = dyn_cast(Sel->getFalseValue()); Constant *CBO = dyn_cast(BO.getOperand(SelOpNo ^ 1)); if (!CBO || !CT || !CF) return false; if (CastOp) { if (!CastOp->hasOneUse()) return false; CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); } // TODO: Handle special 0/-1 cases DAG combine does, although we only really // need to handle divisions here. Constant *FoldedT = SelOpNo ? ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); if (isa(FoldedT)) return false; Constant *FoldedF = SelOpNo ? ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); if (isa(FoldedF)) return false; IRBuilder<> Builder(&BO); Builder.SetCurrentDebugLocation(BO.getDebugLoc()); if (const FPMathOperator *FPOp = dyn_cast(&BO)) Builder.setFastMathFlags(FPOp->getFastMathFlags()); Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), FoldedT, FoldedF); NewSelect->takeName(&BO); BO.replaceAllUsesWith(NewSelect); BO.eraseFromParent(); if (CastOp) CastOp->eraseFromParent(); Sel->eraseFromParent(); return true; } // Optimize fdiv with rcp: // // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is // allowed with unsafe-fp-math or afn. // // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, bool RcpIsAccurate, IRBuilder<> &Builder, Module *Mod) { if (!AllowInaccurateRcp && !RcpIsAccurate) return nullptr; Type *Ty = Den->getType(); if (const ConstantFP *CLHS = dyn_cast(Num)) { if (AllowInaccurateRcp || RcpIsAccurate) { if (CLHS->isExactlyValue(1.0)) { Function *Decl = Intrinsic::getDeclaration( Mod, Intrinsic::amdgcn_rcp, Ty); // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to // the CI documentation has a worst case error of 1 ulp. // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to // use it as long as we aren't trying to use denormals. // // v_rcp_f16 and v_rsq_f16 DO support denormals. // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't // insert rsq intrinsic here. // 1.0 / x -> rcp(x) return Builder.CreateCall(Decl, { Den }); } // Same as for 1.0, but expand the sign out of the constant. if (CLHS->isExactlyValue(-1.0)) { Function *Decl = Intrinsic::getDeclaration( Mod, Intrinsic::amdgcn_rcp, Ty); // -1.0 / x -> rcp (fneg x) Value *FNeg = Builder.CreateFNeg(Den); return Builder.CreateCall(Decl, { FNeg }); } } } if (AllowInaccurateRcp) { Function *Decl = Intrinsic::getDeclaration( Mod, Intrinsic::amdgcn_rcp, Ty); // Turn into multiply by the reciprocal. // x / y -> x * (1.0 / y) Value *Recip = Builder.CreateCall(Decl, { Den }); return Builder.CreateFMul(Num, Recip); } return nullptr; } // optimize with fdiv.fast: // // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. // // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. // // NOTE: optimizeWithRcp should be tried first because rcp is the preference. static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, bool HasDenormals, IRBuilder<> &Builder, Module *Mod) { // fdiv.fast can achieve 2.5 ULP accuracy. if (ReqdAccuracy < 2.5f) return nullptr; // Only have fdiv.fast for f32. Type *Ty = Den->getType(); if (!Ty->isFloatTy()) return nullptr; bool NumIsOne = false; if (const ConstantFP *CNum = dyn_cast(Num)) { if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) NumIsOne = true; } // fdiv does not support denormals. But 1.0/x is always fine to use it. if (HasDenormals && !NumIsOne) return nullptr; Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); return Builder.CreateCall(Decl, { Num, Den }); } // Optimizations is performed based on fpmath, fast math flags as well as // denormals to optimize fdiv with either rcp or fdiv.fast. // // With rcp: // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is // allowed with unsafe-fp-math or afn. // // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. // // With fdiv.fast: // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. // // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. // // NOTE: rcp is the preference in cases that both are legal. bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { Type *Ty = FDiv.getType()->getScalarType(); // The f64 rcp/rsq approximations are pretty inaccurate. We can do an // expansion around them in codegen. if (Ty->isDoubleTy()) return false; // No intrinsic for fdiv16 if target does not support f16. if (Ty->isHalfTy() && !ST->has16BitInsts()) return false; const FPMathOperator *FPOp = cast(&FDiv); const float ReqdAccuracy = FPOp->getFPAccuracy(); // Inaccurate rcp is allowed with unsafe-fp-math or afn. FastMathFlags FMF = FPOp->getFastMathFlags(); const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); // rcp_f16 is accurate for !fpmath >= 1.0ulp. // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. // rcp_f64 is never accurate. const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); Builder.setFastMathFlags(FMF); Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); Value *Num = FDiv.getOperand(0); Value *Den = FDiv.getOperand(1); Value *NewFDiv = nullptr; if (auto *VT = dyn_cast(FDiv.getType())) { NewFDiv = UndefValue::get(VT); // FIXME: Doesn't do the right thing for cases where the vector is partially // constant. This works when the scalarizer pass is run first. for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { Value *NumEltI = Builder.CreateExtractElement(Num, I); Value *DenEltI = Builder.CreateExtractElement(Den, I); // Try rcp first. Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, RcpIsAccurate, Builder, Mod); if (!NewElt) // Try fdiv.fast. NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, HasFP32Denormals, Builder, Mod); if (!NewElt) // Keep the original. NewElt = Builder.CreateFDiv(NumEltI, DenEltI); NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); } } else { // Scalar FDiv. // Try rcp first. NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, Builder, Mod); if (!NewFDiv) { // Try fdiv.fast. NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, Builder, Mod); } } if (NewFDiv) { FDiv.replaceAllUsesWith(NewFDiv); NewFDiv->takeName(&FDiv); FDiv.eraseFromParent(); } return !!NewFDiv; } bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) { // Match the Xor instruction, its type and its operands IntrinsicInst *IntrinsicCall = dyn_cast(I.getOperand(0)); ConstantInt *RHS = dyn_cast(I.getOperand(1)); if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1) return visitBinaryOperator(I); // Check if the Call is an intrinsic intruction to amdgcn_class intrinsic // has only one use if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class || !IntrinsicCall->hasOneUse()) return visitBinaryOperator(I); // "Not" the second argument of the intrinsic call ConstantInt *Arg = dyn_cast(IntrinsicCall->getOperand(1)); if (!Arg) return visitBinaryOperator(I); IntrinsicCall->setOperand( 1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff)); I.replaceAllUsesWith(IntrinsicCall); I.eraseFromParent(); return true; } static bool hasUnsafeFPMath(const Function &F) { Attribute Attr = F.getFnAttribute("unsafe-fp-math"); return Attr.getValueAsBool(); } static std::pair getMul64(IRBuilder<> &Builder, Value *LHS, Value *RHS) { Type *I32Ty = Builder.getInt32Ty(); Type *I64Ty = Builder.getInt64Ty(); Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); Hi = Builder.CreateTrunc(Hi, I32Ty); return std::make_pair(Lo, Hi); } static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { return getMul64(Builder, LHS, RHS).second; } /// Figure out how many bits are really needed for this ddivision. \p AtLeast is /// an optimization hint to bypass the second ComputeNumSignBits call if we the /// first one is insufficient. Returns -1 on failure. int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, Value *Num, Value *Den, unsigned AtLeast, bool IsSigned) const { const DataLayout &DL = Mod->getDataLayout(); unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); if (LHSSignBits < AtLeast) return -1; unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); if (RHSSignBits < AtLeast) return -1; unsigned SignBits = std::min(LHSSignBits, RHSSignBits); unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; if (IsSigned) ++DivBits; return DivBits; } // The fractional part of a float is enough to accurately represent up to // a 24-bit signed integer. Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, bool IsDiv, bool IsSigned) const { int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); if (DivBits == -1) return nullptr; return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); } Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, unsigned DivBits, bool IsDiv, bool IsSigned) const { Type *I32Ty = Builder.getInt32Ty(); Num = Builder.CreateTrunc(Num, I32Ty); Den = Builder.CreateTrunc(Den, I32Ty); Type *F32Ty = Builder.getFloatTy(); ConstantInt *One = Builder.getInt32(1); Value *JQ = One; if (IsSigned) { // char|short jq = ia ^ ib; JQ = Builder.CreateXor(Num, Den); // jq = jq >> (bitsize - 2) JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); // jq = jq | 0x1 JQ = Builder.CreateOr(JQ, One); } // int ia = (int)LHS; Value *IA = Num; // int ib, (int)RHS; Value *IB = Den; // float fa = (float)ia; Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) : Builder.CreateUIToFP(IA, F32Ty); // float fb = (float)ib; Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) : Builder.CreateUIToFP(IB,F32Ty); Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, Builder.getFloatTy()); Value *RCP = Builder.CreateCall(RcpDecl, { FB }); Value *FQM = Builder.CreateFMul(FA, RCP); // fq = trunc(fqm); CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); FQ->copyFastMathFlags(Builder.getFastMathFlags()); // float fqneg = -fq; Value *FQNeg = Builder.CreateFNeg(FQ); // float fr = mad(fqneg, fb, fa); auto FMAD = !ST->hasMadMacF32Insts() ? Intrinsic::fma : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; Value *FR = Builder.CreateIntrinsic(FMAD, {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); // int iq = (int)fq; Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) : Builder.CreateFPToUI(FQ, I32Ty); // fr = fabs(fr); FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); // fb = fabs(fb); FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); // int cv = fr >= fb; Value *CV = Builder.CreateFCmpOGE(FR, FB); // jq = (cv ? jq : 0); JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); // dst = iq + jq; Value *Div = Builder.CreateAdd(IQ, JQ); Value *Res = Div; if (!IsDiv) { // Rem needs compensation, it's easier to recompute it Value *Rem = Builder.CreateMul(Div, Den); Res = Builder.CreateSub(Num, Rem); } if (DivBits != 0 && DivBits < 32) { // Extend in register from the number of bits this divide really is. if (IsSigned) { int InRegBits = 32 - DivBits; Res = Builder.CreateShl(Res, InRegBits); Res = Builder.CreateAShr(Res, InRegBits); } else { ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1); Res = Builder.CreateAnd(Res, TruncMask); } } return Res; } // Try to recognize special cases the DAG will emit special, better expansions // than the general expansion we do here. // TODO: It would be better to just directly handle those optimizations here. bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( BinaryOperator &I, Value *Num, Value *Den) const { if (Constant *C = dyn_cast(Den)) { // Arbitrary constants get a better expansion as long as a wider mulhi is // legal. if (C->getType()->getScalarSizeInBits() <= 32) return true; // TODO: Sdiv check for not exact for some reason. // If there's no wider mulhi, there's only a better expansion for powers of // two. // TODO: Should really know for each vector element. if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) return true; return false; } if (BinaryOperator *BinOpDen = dyn_cast(Den)) { // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 if (BinOpDen->getOpcode() == Instruction::Shl && isa(BinOpDen->getOperand(0)) && isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 0, AC, &I, DT)) { return true; } } return false; } static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { // Check whether the sign can be determined statically. KnownBits Known = computeKnownBits(V, *DL); if (Known.isNegative()) return Constant::getAllOnesValue(V->getType()); if (Known.isNonNegative()) return Constant::getNullValue(V->getType()); return Builder.CreateAShr(V, Builder.getInt32(31)); } Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, Value *X, Value *Y) const { Instruction::BinaryOps Opc = I.getOpcode(); assert(Opc == Instruction::URem || Opc == Instruction::UDiv || Opc == Instruction::SRem || Opc == Instruction::SDiv); FastMathFlags FMF; FMF.setFast(); Builder.setFastMathFlags(FMF); if (divHasSpecialOptimization(I, X, Y)) return nullptr; // Keep it for later optimization. bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; Type *Ty = X->getType(); Type *I32Ty = Builder.getInt32Ty(); Type *F32Ty = Builder.getFloatTy(); if (Ty->getScalarSizeInBits() < 32) { if (IsSigned) { X = Builder.CreateSExt(X, I32Ty); Y = Builder.CreateSExt(Y, I32Ty); } else { X = Builder.CreateZExt(X, I32Ty); Y = Builder.CreateZExt(Y, I32Ty); } } if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : Builder.CreateZExtOrTrunc(Res, Ty); } ConstantInt *Zero = Builder.getInt32(0); ConstantInt *One = Builder.getInt32(1); Value *Sign = nullptr; if (IsSigned) { Value *SignX = getSign32(X, Builder, DL); Value *SignY = getSign32(Y, Builder, DL); // Remainder sign is the same as LHS Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; X = Builder.CreateAdd(X, SignX); Y = Builder.CreateAdd(Y, SignY); X = Builder.CreateXor(X, SignX); Y = Builder.CreateXor(Y, SignY); } // The algorithm here is based on ideas from "Software Integer Division", Tom // Rodeheffer, August 2008. // // unsigned udiv(unsigned x, unsigned y) { // // Initial estimate of inv(y). The constant is less than 2^32 to ensure // // that this is a lower bound on inv(y), even if some of the calculations // // round up. // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); // // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. // // Empirically this is guaranteed to give a "two-y" lower bound on // // inv(y). // z += umulh(z, -y * z); // // // Quotient/remainder estimate. // unsigned q = umulh(x, z); // unsigned r = x - q * y; // // // Two rounds of quotient/remainder refinement. // if (r >= y) { // ++q; // r -= y; // } // if (r >= y) { // ++q; // r -= y; // } // // return q; // } // Initial estimate of inv(y). Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE)); Value *ScaledY = Builder.CreateFMul(RcpY, Scale); Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); // One round of UNR. Value *NegY = Builder.CreateSub(Zero, Y); Value *NegYZ = Builder.CreateMul(NegY, Z); Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); // Quotient/remainder estimate. Value *Q = getMulHu(Builder, X, Z); Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); // First quotient/remainder refinement. Value *Cond = Builder.CreateICmpUGE(R, Y); if (IsDiv) Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); // Second quotient/remainder refinement. Cond = Builder.CreateICmpUGE(R, Y); Value *Res; if (IsDiv) Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); else Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); if (IsSigned) { Res = Builder.CreateXor(Res, Sign); Res = Builder.CreateSub(Res, Sign); } Res = Builder.CreateTrunc(Res, Ty); return Res; } Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den) const { if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) return nullptr; // Keep it for later optimization. Instruction::BinaryOps Opc = I.getOpcode(); bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); if (NumDivBits == -1) return nullptr; Value *Narrowed = nullptr; if (NumDivBits <= 24) { Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, IsDiv, IsSigned); } else if (NumDivBits <= 32) { Narrowed = expandDivRem32(Builder, I, Num, Den); } if (Narrowed) { return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : Builder.CreateZExt(Narrowed, Num->getType()); } return nullptr; } void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { Instruction::BinaryOps Opc = I.getOpcode(); // Do the general expansion. if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { expandDivisionUpTo64Bits(&I); return; } if (Opc == Instruction::URem || Opc == Instruction::SRem) { expandRemainderUpTo64Bits(&I); return; } llvm_unreachable("not a division"); } bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { if (foldBinOpIntoSelect(I)) return true; if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && DA->isUniform(&I) && promoteUniformOpToI32(I)) return true; if (UseMul24Intrin && replaceMulWithMul24(I)) return true; bool Changed = false; Instruction::BinaryOps Opc = I.getOpcode(); Type *Ty = I.getType(); Value *NewDiv = nullptr; unsigned ScalarSize = Ty->getScalarSizeInBits(); SmallVector Div64ToExpand; if ((Opc == Instruction::URem || Opc == Instruction::UDiv || Opc == Instruction::SRem || Opc == Instruction::SDiv) && ScalarSize <= 64 && !DisableIDivExpand) { Value *Num = I.getOperand(0); Value *Den = I.getOperand(1); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); if (auto *VT = dyn_cast(Ty)) { NewDiv = UndefValue::get(VT); for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { Value *NumEltN = Builder.CreateExtractElement(Num, N); Value *DenEltN = Builder.CreateExtractElement(Den, N); Value *NewElt; if (ScalarSize <= 32) { NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); if (!NewElt) NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); } else { // See if this 64-bit division can be shrunk to 32/24-bits before // producing the general expansion. NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); if (!NewElt) { // The general 64-bit expansion introduces control flow and doesn't // return the new value. Just insert a scalar copy and defer // expanding it. NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); Div64ToExpand.push_back(cast(NewElt)); } } NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); } } else { if (ScalarSize <= 32) NewDiv = expandDivRem32(Builder, I, Num, Den); else { NewDiv = shrinkDivRem64(Builder, I, Num, Den); if (!NewDiv) Div64ToExpand.push_back(&I); } } if (NewDiv) { I.replaceAllUsesWith(NewDiv); I.eraseFromParent(); Changed = true; } } if (ExpandDiv64InIR) { // TODO: We get much worse code in specially handled constant cases. for (BinaryOperator *Div : Div64ToExpand) { expandDivRem64(*Div); Changed = true; } } return Changed; } bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { if (!WidenLoads) return false; if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && canWidenScalarExtLoad(I)) { IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = Builder.getInt32Ty(); Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); WidenLoad->copyMetadata(I); // If we have range metadata, we need to convert the type, and not make // assumptions about the high bits. if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { ConstantInt *Lower = mdconst::extract(Range->getOperand(0)); if (Lower->getValue().isNullValue()) { WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); } else { Metadata *LowAndHigh[] = { ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), // Don't make assumptions about the high bits. ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) }; WidenLoad->setMetadata(LLVMContext::MD_range, MDNode::get(Mod->getContext(), LowAndHigh)); } } int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); Type *IntNTy = Builder.getIntNTy(TySize); Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); I.replaceAllUsesWith(ValOrig); I.eraseFromParent(); return true; } return false; } bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { bool Changed = false; if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && DA->isUniform(&I)) Changed |= promoteUniformOpToI32(I); return Changed; } bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { bool Changed = false; if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && DA->isUniform(&I)) Changed |= promoteUniformOpToI32(I); return Changed; } bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { switch (I.getIntrinsicID()) { case Intrinsic::bitreverse: return visitBitreverseIntrinsicInst(I); default: return false; } } bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { bool Changed = false; if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && DA->isUniform(&I)) Changed |= promoteUniformBitreverseToI32(I); return Changed; } bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { Mod = &M; DL = &Mod->getDataLayout(); return false; } bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { if (skipFunction(F)) return false; auto *TPC = getAnalysisIfAvailable(); if (!TPC) return false; const AMDGPUTargetMachine &TM = TPC->getTM(); ST = &TM.getSubtarget(F); AC = &getAnalysis().getAssumptionCache(F); DA = &getAnalysis(); auto *DTWP = getAnalysisIfAvailable(); DT = DTWP ? &DTWP->getDomTree() : nullptr; HasUnsafeFPMath = hasUnsafeFPMath(F); AMDGPU::SIModeRegisterDefaults Mode(F); HasFP32Denormals = Mode.allFP32Denormals(); bool MadeChange = false; Function::iterator NextBB; for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { BasicBlock *BB = &*FI; NextBB = std::next(FI); BasicBlock::iterator Next; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { Next = std::next(I); MadeChange |= visit(*I); if (Next != E) { // Control flow changed BasicBlock *NextInstBB = Next->getParent(); if (NextInstBB != BB) { BB = NextInstBB; E = BB->end(); FE = F.end(); } } } } return MadeChange; } INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", false, false) char AMDGPUCodeGenPrepare::ID = 0; FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { return new AMDGPUCodeGenPrepare(); }