//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // \file // This file implements a TargetTransformInfo analysis pass specific to the // AMDGPU target machine. It uses the target's detailed information to provide // more precise answers to certain TTI queries, while letting the target // independent and default TTI implementations handle the rest. // //===----------------------------------------------------------------------===// #include "AMDGPUTargetTransformInfo.h" #include "AMDGPUTargetMachine.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/KnownBits.h" using namespace llvm; #define DEBUG_TYPE "AMDGPUtti" static cl::opt UnrollThresholdPrivate( "amdgpu-unroll-threshold-private", cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), cl::init(2700), cl::Hidden); static cl::opt UnrollThresholdLocal( "amdgpu-unroll-threshold-local", cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), cl::init(1000), cl::Hidden); static cl::opt UnrollThresholdIf( "amdgpu-unroll-threshold-if", cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), cl::init(200), cl::Hidden); static cl::opt UnrollRuntimeLocal( "amdgpu-unroll-runtime-local", cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), cl::init(true), cl::Hidden); static cl::opt UseLegacyDA( "amdgpu-use-legacy-divergence-analysis", cl::desc("Enable legacy divergence analysis for AMDGPU"), cl::init(false), cl::Hidden); static cl::opt UnrollMaxBlockToAnalyze( "amdgpu-unroll-max-block-to-analyze", cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), cl::init(32), cl::Hidden); static cl::opt ArgAllocaCost("amdgpu-inline-arg-alloca-cost", cl::Hidden, cl::init(4000), cl::desc("Cost of alloca argument")); // If the amount of scratch memory to eliminate exceeds our ability to allocate // it into registers we gain nothing by aggressively inlining functions for that // heuristic. static cl::opt ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, cl::init(256), cl::desc("Maximum alloca size to use for inline cost")); // Inliner constraint to achieve reasonable compilation time. static cl::opt InlineMaxBB( "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), cl::desc("Maximum number of BBs allowed in a function after inlining" " (compile time constraint)")); static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, unsigned Depth = 0) { const Instruction *I = dyn_cast(Cond); if (!I) return false; for (const Value *V : I->operand_values()) { if (!L->contains(I)) continue; if (const PHINode *PHI = dyn_cast(V)) { if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { return SubLoop->contains(PHI); })) return true; } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) return true; } return false; } AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) : BaseT(TM, F.getParent()->getDataLayout()), TargetTriple(TM->getTargetTriple()), ST(static_cast(TM->getSubtargetImpl(F))), TLI(ST->getTargetLowering()) {} void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP) { const Function &F = *L->getHeader()->getParent(); UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); UP.MaxCount = std::numeric_limits::max(); UP.Partial = true; // Conditional branch in a loop back edge needs 3 additional exec // manipulations in average. UP.BEInsns += 3; // TODO: Do we want runtime unrolling? // Maximum alloca size than can fit registers. Reserve 16 registers. const unsigned MaxAlloca = (256 - 16) * 4; unsigned ThresholdPrivate = UnrollThresholdPrivate; unsigned ThresholdLocal = UnrollThresholdLocal; // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the // provided threshold value as the default for Threshold if (MDNode *LoopUnrollThreshold = findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) { if (LoopUnrollThreshold->getNumOperands() == 2) { ConstantInt *MetaThresholdValue = mdconst::extract_or_null( LoopUnrollThreshold->getOperand(1)); if (MetaThresholdValue) { // We will also use the supplied value for PartialThreshold for now. // We may introduce additional metadata if it becomes necessary in the // future. UP.Threshold = MetaThresholdValue->getSExtValue(); UP.PartialThreshold = UP.Threshold; ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold); ThresholdLocal = std::min(ThresholdLocal, UP.Threshold); } } } unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); for (const BasicBlock *BB : L->getBlocks()) { const DataLayout &DL = BB->getModule()->getDataLayout(); unsigned LocalGEPsSeen = 0; if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { return SubLoop->contains(BB); })) continue; // Block belongs to an inner loop. for (const Instruction &I : *BB) { // Unroll a loop which contains an "if" statement whose condition // defined by a PHI belonging to the loop. This may help to eliminate // if region and potentially even PHI itself, saving on both divergence // and registers used for the PHI. // Add a small bonus for each of such "if" statements. if (const BranchInst *Br = dyn_cast(&I)) { if (UP.Threshold < MaxBoost && Br->isConditional()) { BasicBlock *Succ0 = Br->getSuccessor(0); BasicBlock *Succ1 = Br->getSuccessor(1); if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || (L->contains(Succ1) && L->isLoopExiting(Succ1))) continue; if (dependsOnLocalPhi(L, Br->getCondition())) { UP.Threshold += UnrollThresholdIf; LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold << " for loop:\n" << *L << " due to " << *Br << '\n'); if (UP.Threshold >= MaxBoost) return; } } continue; } const GetElementPtrInst *GEP = dyn_cast(&I); if (!GEP) continue; unsigned AS = GEP->getAddressSpace(); unsigned Threshold = 0; if (AS == AMDGPUAS::PRIVATE_ADDRESS) Threshold = ThresholdPrivate; else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) Threshold = ThresholdLocal; else continue; if (UP.Threshold >= Threshold) continue; if (AS == AMDGPUAS::PRIVATE_ADDRESS) { const Value *Ptr = GEP->getPointerOperand(); const AllocaInst *Alloca = dyn_cast(getUnderlyingObject(Ptr)); if (!Alloca || !Alloca->isStaticAlloca()) continue; Type *Ty = Alloca->getAllocatedType(); unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; if (AllocaSize > MaxAlloca) continue; } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { LocalGEPsSeen++; // Inhibit unroll for local memory if we have seen addressing not to // a variable, most likely we will be unable to combine it. // Do not unroll too deep inner loops for local memory to give a chance // to unroll an outer loop for a more important reason. if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || (!isa(GEP->getPointerOperand()) && !isa(GEP->getPointerOperand()))) continue; LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" << *L << " due to LDS use.\n"); UP.Runtime = UnrollRuntimeLocal; } // Check if GEP depends on a value defined by this loop itself. bool HasLoopDef = false; for (const Value *Op : GEP->operands()) { const Instruction *Inst = dyn_cast(Op); if (!Inst || L->isLoopInvariant(Op)) continue; if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { return SubLoop->contains(Inst); })) continue; HasLoopDef = true; break; } if (!HasLoopDef) continue; // We want to do whatever we can to limit the number of alloca // instructions that make it through to the code generator. allocas // require us to use indirect addressing, which is slow and prone to // compiler bugs. If this loop does an address calculation on an // alloca ptr, then we want to use a higher than normal loop unroll // threshold. This will give SROA a better chance to eliminate these // allocas. // // We also want to have more unrolling for local memory to let ds // instructions with different offsets combine. // // Don't use the maximum allowed value here as it will make some // programs way too big. UP.Threshold = Threshold; LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold << " for loop:\n" << *L << " due to " << *GEP << '\n'); if (UP.Threshold >= MaxBoost) return; } // If we got a GEP in a small BB from inner loop then increase max trip // count to analyze for better estimation cost in unroll if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze) UP.MaxIterationsCountToAnalyze = 32; } } void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) { BaseT::getPeelingPreferences(L, SE, PP); } const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = { // Codegen control options which don't matter. AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler, AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal, AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess, AMDGPU::FeatureUnalignedAccessMode, AMDGPU::FeatureAutoWaitcntBeforeBarrier, // Property of the kernel/environment which can't actually differ. AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK, AMDGPU::FeatureTrapHandler, // The default assumption needs to be ecc is enabled, but no directly // exposed operations depend on it, so it can be safely inlined. AMDGPU::FeatureSRAMECC, // Perf-tuning features AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops}; GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) : BaseT(TM, F.getParent()->getDataLayout()), ST(static_cast(TM->getSubtargetImpl(F))), TLI(ST->getTargetLowering()), CommonTTI(TM, F), IsGraphics(AMDGPU::isGraphics(F.getCallingConv())), MaxVGPRs(ST->getMaxNumVGPRs( std::max(ST->getWavesPerEU(F).first, ST->getWavesPerEUForWorkGroup( ST->getFlatWorkGroupSizes(F).second)))) { AMDGPU::SIModeRegisterDefaults Mode(F); HasFP32Denormals = Mode.allFP32Denormals(); HasFP64FP16Denormals = Mode.allFP64FP16Denormals(); } unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { // The concept of vector registers doesn't really exist. Some packed vector // operations operate on the normal 32-bit registers. return MaxVGPRs; } unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { // This is really the number of registers to fill when vectorizing / // interleaving loops, so we lie to avoid trying to use all registers. return getHardwareNumberOfRegisters(Vec) >> 3; } unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { const SIRegisterInfo *TRI = ST->getRegisterInfo(); const TargetRegisterClass *RC = TRI->getRegClass(RCID); unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32; return getHardwareNumberOfRegisters(false) / NumVGPRs; } TypeSize GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { switch (K) { case TargetTransformInfo::RGK_Scalar: return TypeSize::getFixed(32); case TargetTransformInfo::RGK_FixedWidthVector: return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32); case TargetTransformInfo::RGK_ScalableVector: return TypeSize::getScalable(0); } llvm_unreachable("Unsupported register kind"); } unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { return 32; } unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { if (Opcode == Instruction::Load || Opcode == Instruction::Store) return 32 * 4 / ElemWidth; return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2 : 1; } unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const { unsigned VecRegBitWidth = VF * LoadSize; if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) // TODO: Support element-size less than 32bit? return 128 / LoadSize; return VF; } unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const { unsigned VecRegBitWidth = VF * StoreSize; if (VecRegBitWidth > 128) return 128 / StoreSize; return VF; } unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { return 512; } if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) return 8 * ST->getMaxPrivateElementSize(); // Common to flat, global, local and region. Assume for unknown addrspace. return 128; } bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { // We allow vectorization of flat stores, even though we may need to decompose // them later if they may access private memory. We don't have enough context // here, and legalization can handle it. if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && ChainSizeInBytes <= ST->getMaxPrivateElementSize(); } return true; } bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); } bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); } // FIXME: Really we would like to issue multiple 128-bit loads and stores per // iteration. Should we report a larger size and let it legalize? // // FIXME: Should we use narrower types for local/region, or account for when // unaligned access is legal? // // FIXME: This could use fine tuning and microbenchmarks. Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { unsigned MinAlign = std::min(SrcAlign, DestAlign); // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the // hardware into byte accesses. If you assume all alignments are equally // probable, it's more efficient on average to use short accesses for this // case. if (MinAlign == 2) return Type::getInt16Ty(Context); // Not all subtargets have 128-bit DS instructions, and we currently don't // form them by default. if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { return FixedVectorType::get(Type::getInt32Ty(Context), 2); } // Global memory works best with 16-byte accesses. Private memory will also // hit this, although they'll be decomposed. return FixedVectorType::get(Type::getInt32Ty(Context), 4); } void GCNTTIImpl::getMemcpyLoopResidualLoweringType( SmallVectorImpl &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { assert(RemainingBytes < 16); unsigned MinAlign = std::min(SrcAlign, DestAlign); if (MinAlign != 2) { Type *I64Ty = Type::getInt64Ty(Context); while (RemainingBytes >= 8) { OpsOut.push_back(I64Ty); RemainingBytes -= 8; } Type *I32Ty = Type::getInt32Ty(Context); while (RemainingBytes >= 4) { OpsOut.push_back(I32Ty); RemainingBytes -= 4; } } Type *I16Ty = Type::getInt16Ty(Context); while (RemainingBytes >= 2) { OpsOut.push_back(I16Ty); RemainingBytes -= 2; } Type *I8Ty = Type::getInt8Ty(Context); while (RemainingBytes) { OpsOut.push_back(I8Ty); --RemainingBytes; } } unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { // Disable unrolling if the loop is not vectorized. // TODO: Enable this again. if (VF == 1) return 1; return 8; } bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const { switch (Inst->getIntrinsicID()) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: case Intrinsic::amdgcn_ds_ordered_add: case Intrinsic::amdgcn_ds_ordered_swap: case Intrinsic::amdgcn_ds_fadd: case Intrinsic::amdgcn_ds_fmin: case Intrinsic::amdgcn_ds_fmax: { auto *Ordering = dyn_cast(Inst->getArgOperand(2)); auto *Volatile = dyn_cast(Inst->getArgOperand(4)); if (!Ordering || !Volatile) return false; // Invalid. unsigned OrderingVal = Ordering->getZExtValue(); if (OrderingVal > static_cast(AtomicOrdering::SequentiallyConsistent)) return false; Info.PtrVal = Inst->getArgOperand(0); Info.Ordering = static_cast(OrderingVal); Info.ReadMem = true; Info.WriteMem = true; Info.IsVolatile = !Volatile->isNullValue(); return true; } default: return false; } } InstructionCost GCNTTIImpl::getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo, ArrayRef Args, const Instruction *CxtI) { EVT OrigTy = TLI->getValueType(DL, Ty); if (!OrigTy.isSimple()) { // FIXME: We're having to query the throughput cost so that the basic // implementation tries to generate legalize and scalarization costs. Maybe // we could hoist the scalarization code here? if (CostKind != TTI::TCK_CodeSize) return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, Args, CxtI); // Scalarization // Check if any of the operands are vector operands. int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); std::pair LT = TLI->getTypeLegalizationCost(DL, Ty); bool IsFloat = Ty->isFPOrFPVectorTy(); // Assume that floating point arithmetic operations cost twice as much as // integer operations. unsigned OpCost = (IsFloat ? 2 : 1); if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { // The operation is legal. Assume it costs 1. // TODO: Once we have extract/insert subvector cost we need to use them. return LT.first * OpCost; } if (!TLI->isOperationExpand(ISD, LT.second)) { // If the operation is custom lowered, then assume that the code is twice // as expensive. return LT.first * 2 * OpCost; } // Else, assume that we need to scalarize this op. // TODO: If one of the types get legalized by splitting, handle this // similarly to what getCastInstrCost() does. if (auto *VTy = dyn_cast(Ty)) { unsigned Num = cast(VTy)->getNumElements(); InstructionCost Cost = getArithmeticInstrCost( Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, Args, CxtI); // Return the cost of multiple scalar invocation plus the cost of // inserting and extracting the values. SmallVector Tys(Args.size(), Ty); return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; } // We don't know anything about this scalar instruction. return OpCost; } // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(DL, Ty); int ISD = TLI->InstructionOpcodeToISD(Opcode); // Because we don't have any legal vector operations, but the legal types, we // need to account for split vectors. unsigned NElts = LT.second.isVector() ? LT.second.getVectorNumElements() : 1; MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; switch (ISD) { case ISD::SHL: case ISD::SRL: case ISD::SRA: if (SLT == MVT::i64) return get64BitInstrCost(CostKind) * LT.first * NElts; if (ST->has16BitInsts() && SLT == MVT::i16) NElts = (NElts + 1) / 2; // i32 return getFullRateInstrCost() * LT.first * NElts; case ISD::ADD: case ISD::SUB: case ISD::AND: case ISD::OR: case ISD::XOR: if (SLT == MVT::i64) { // and, or and xor are typically split into 2 VALU instructions. return 2 * getFullRateInstrCost() * LT.first * NElts; } if (ST->has16BitInsts() && SLT == MVT::i16) NElts = (NElts + 1) / 2; return LT.first * NElts * getFullRateInstrCost(); case ISD::MUL: { const int QuarterRateCost = getQuarterRateInstrCost(CostKind); if (SLT == MVT::i64) { const int FullRateCost = getFullRateInstrCost(); return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; } if (ST->has16BitInsts() && SLT == MVT::i16) NElts = (NElts + 1) / 2; // i32 return QuarterRateCost * NElts * LT.first; } case ISD::FMUL: // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole // fused operation. if (CxtI && CxtI->hasOneUse()) if (const auto *FAdd = dyn_cast(*CxtI->user_begin())) { const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); if (OPC == ISD::FADD || OPC == ISD::FSUB) { if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) return TargetTransformInfo::TCC_Free; if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) return TargetTransformInfo::TCC_Free; // Estimate all types may be fused with contract/unsafe flags const TargetOptions &Options = TLI->getTargetMachine().Options; if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || (FAdd->hasAllowContract() && CxtI->hasAllowContract())) return TargetTransformInfo::TCC_Free; } } LLVM_FALLTHROUGH; case ISD::FADD: case ISD::FSUB: if (ST->hasPackedFP32Ops() && SLT == MVT::f32) NElts = (NElts + 1) / 2; if (SLT == MVT::f64) return LT.first * NElts * get64BitInstrCost(CostKind); if (ST->has16BitInsts() && SLT == MVT::f16) NElts = (NElts + 1) / 2; if (SLT == MVT::f32 || SLT == MVT::f16) return LT.first * NElts * getFullRateInstrCost(); break; case ISD::FDIV: case ISD::FREM: // FIXME: frem should be handled separately. The fdiv in it is most of it, // but the current lowering is also not entirely correct. if (SLT == MVT::f64) { int Cost = 7 * get64BitInstrCost(CostKind) + getQuarterRateInstrCost(CostKind) + 3 * getHalfRateInstrCost(CostKind); // Add cost of workaround. if (!ST->hasUsableDivScaleConditionOutput()) Cost += 3 * getFullRateInstrCost(); return LT.first * Cost * NElts; } if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { // TODO: This is more complicated, unsafe flags etc. if ((SLT == MVT::f32 && !HasFP32Denormals) || (SLT == MVT::f16 && ST->has16BitInsts())) { return LT.first * getQuarterRateInstrCost(CostKind) * NElts; } } if (SLT == MVT::f16 && ST->has16BitInsts()) { // 2 x v_cvt_f32_f16 // f32 rcp // f32 fmul // v_cvt_f16_f32 // f16 div_fixup int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind); return LT.first * Cost * NElts; } if (SLT == MVT::f32 || SLT == MVT::f16) { // 4 more v_cvt_* insts without f16 insts support int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(CostKind); if (!HasFP32Denormals) { // FP mode switches. Cost += 2 * getFullRateInstrCost(); } return LT.first * NElts * Cost; } break; case ISD::FNEG: // Use the backend' estimation. If fneg is not free each element will cost // one additional instruction. return TLI->isFNegFree(SLT) ? 0 : NElts; default: break; } return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, Args, CxtI); } // Return true if there's a potential benefit from using v2f16/v2i16 // instructions for an intrinsic, even if it requires nontrivial legalization. static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { switch (ID) { case Intrinsic::fma: // TODO: fmuladd // There's a small benefit to using vector ops in the legalized code. case Intrinsic::round: case Intrinsic::uadd_sat: case Intrinsic::usub_sat: case Intrinsic::sadd_sat: case Intrinsic::ssub_sat: return true; default: return false; } } InstructionCost GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) { if (ICA.getID() == Intrinsic::fabs) return 0; if (!intrinsicHasPackedVectorBenefit(ICA.getID())) return BaseT::getIntrinsicInstrCost(ICA, CostKind); Type *RetTy = ICA.getReturnType(); EVT OrigTy = TLI->getValueType(DL, RetTy); if (!OrigTy.isSimple()) { if (CostKind != TTI::TCK_CodeSize) return BaseT::getIntrinsicInstrCost(ICA, CostKind); // TODO: Combine these two logic paths. if (ICA.isTypeBasedOnly()) return getTypeBasedIntrinsicInstrCost(ICA, CostKind); unsigned RetVF = (RetTy->isVectorTy() ? cast(RetTy)->getNumElements() : 1); const IntrinsicInst *I = ICA.getInst(); const SmallVectorImpl &Args = ICA.getArgs(); FastMathFlags FMF = ICA.getFlags(); // Assume that we need to scalarize this intrinsic. // Compute the scalarization overhead based on Args for a vector // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while // CostModel will pass a vector RetTy and VF is 1. InstructionCost ScalarizationCost = InstructionCost::getInvalid(); if (RetVF > 1) { ScalarizationCost = 0; if (!RetTy->isVoidTy()) ScalarizationCost += getScalarizationOverhead(cast(RetTy), true, false); ScalarizationCost += getOperandsScalarizationOverhead(Args, ICA.getArgTypes()); } IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I, ScalarizationCost); return getIntrinsicInstrCost(Attrs, CostKind); } // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(DL, RetTy); unsigned NElts = LT.second.isVector() ? LT.second.getVectorNumElements() : 1; MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; if (SLT == MVT::f64) return LT.first * NElts * get64BitInstrCost(CostKind); if ((ST->has16BitInsts() && SLT == MVT::f16) || (ST->hasPackedFP32Ops() && SLT == MVT::f32)) NElts = (NElts + 1) / 2; // TODO: Get more refined intrinsic costs? unsigned InstRate = getQuarterRateInstrCost(CostKind); switch (ICA.getID()) { case Intrinsic::fma: InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind) : getQuarterRateInstrCost(CostKind); break; case Intrinsic::uadd_sat: case Intrinsic::usub_sat: case Intrinsic::sadd_sat: case Intrinsic::ssub_sat: static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16}; if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) NElts = 1; break; } return LT.first * NElts * InstRate; } InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) { assert((I == nullptr || I->getOpcode() == Opcode) && "Opcode should reflect passed instruction."); const bool SCost = (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency); const int CBrCost = SCost ? 5 : 7; switch (Opcode) { case Instruction::Br: { // Branch instruction takes about 4 slots on gfx900. auto BI = dyn_cast_or_null(I); if (BI && BI->isUnconditional()) return SCost ? 1 : 4; // Suppose conditional branch takes additional 3 exec manipulations // instructions in average. return CBrCost; } case Instruction::Switch: { auto SI = dyn_cast_or_null(I); // Each case (including default) takes 1 cmp + 1 cbr instructions in // average. return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1); } case Instruction::Ret: return SCost ? 1 : 10; } return BaseT::getCFInstrCost(Opcode, CostKind, I); } InstructionCost GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, Optional FMF, TTI::TargetCostKind CostKind) { if (TTI::requiresOrderedReduction(FMF)) return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); EVT OrigTy = TLI->getValueType(DL, Ty); // Computes cost on targets that have packed math instructions(which support // 16-bit types only). if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); std::pair LT = TLI->getTypeLegalizationCost(DL, Ty); return LT.first * getFullRateInstrCost(); } InstructionCost GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned, TTI::TargetCostKind CostKind) { EVT OrigTy = TLI->getValueType(DL, Ty); // Computes cost on targets that have packed math instructions(which support // 16-bit types only). if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); std::pair LT = TLI->getTypeLegalizationCost(DL, Ty); return LT.first * getHalfRateInstrCost(CostKind); } InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, unsigned Index) { switch (Opcode) { case Instruction::ExtractElement: case Instruction::InsertElement: { unsigned EltSize = DL.getTypeSizeInBits(cast(ValTy)->getElementType()); if (EltSize < 32) { if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) return 0; return BaseT::getVectorInstrCost(Opcode, ValTy, Index); } // Extracts are just reads of a subregister, so are free. Inserts are // considered free because we don't want to have any cost for scalarizing // operations, and we don't have to copy into a different register class. // Dynamic indexing isn't free and is best avoided. return Index == ~0u ? 2 : 0; } default: return BaseT::getVectorInstrCost(Opcode, ValTy, Index); } } /// Analyze if the results of inline asm are divergent. If \p Indices is empty, /// this is analyzing the collective result of all output registers. Otherwise, /// this is only querying a specific result index if this returns multiple /// registers in a struct. bool GCNTTIImpl::isInlineAsmSourceOfDivergence( const CallInst *CI, ArrayRef Indices) const { // TODO: Handle complex extract indices if (Indices.size() > 1) return true; const DataLayout &DL = CI->getModule()->getDataLayout(); const SIRegisterInfo *TRI = ST->getRegisterInfo(); TargetLowering::AsmOperandInfoVector TargetConstraints = TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; int OutputIdx = 0; for (auto &TC : TargetConstraints) { if (TC.Type != InlineAsm::isOutput) continue; // Skip outputs we don't care about. if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) continue; TLI->ComputeConstraintToUse(TC, SDValue()); Register AssignedReg; const TargetRegisterClass *RC; std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( TRI, TC.ConstraintCode, TC.ConstraintVT); if (AssignedReg) { // FIXME: This is a workaround for getRegForInlineAsmConstraint // returning VS_32 RC = TRI->getPhysRegClass(AssignedReg); } // For AGPR constraints null is returned on subtargets without AGPRs, so // assume divergent for null. if (!RC || !TRI->isSGPRClass(RC)) return true; } return false; } /// \returns true if the new GPU divergence analysis is enabled. bool GCNTTIImpl::useGPUDivergenceAnalysis() const { return !UseLegacyDA; } /// \returns true if the result of the value could potentially be /// different across workitems in a wavefront. bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { if (const Argument *A = dyn_cast(V)) return !AMDGPU::isArgPassedInSGPR(A); // Loads from the private and flat address spaces are divergent, because // threads can execute the load instruction with the same inputs and get // different results. // // All other loads are not divergent, because if threads issue loads with the // same arguments, they will always get the same result. if (const LoadInst *Load = dyn_cast(V)) return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; // Atomics are divergent because they are executed sequentially: when an // atomic operation refers to the same address in each thread, then each // thread after the first sees the value written by the previous thread as // original value. if (isa(V) || isa(V)) return true; if (const IntrinsicInst *Intrinsic = dyn_cast(V)) return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); // Assume all function calls are a source of divergence. if (const CallInst *CI = dyn_cast(V)) { if (CI->isInlineAsm()) return isInlineAsmSourceOfDivergence(CI); return true; } // Assume all function calls are a source of divergence. if (isa(V)) return true; return false; } bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { if (const IntrinsicInst *Intrinsic = dyn_cast(V)) { switch (Intrinsic->getIntrinsicID()) { default: return false; case Intrinsic::amdgcn_readfirstlane: case Intrinsic::amdgcn_readlane: case Intrinsic::amdgcn_icmp: case Intrinsic::amdgcn_fcmp: case Intrinsic::amdgcn_ballot: case Intrinsic::amdgcn_if_break: return true; } } if (const CallInst *CI = dyn_cast(V)) { if (CI->isInlineAsm()) return !isInlineAsmSourceOfDivergence(CI); return false; } const ExtractValueInst *ExtValue = dyn_cast(V); if (!ExtValue) return false; const CallInst *CI = dyn_cast(ExtValue->getOperand(0)); if (!CI) return false; if (const IntrinsicInst *Intrinsic = dyn_cast(CI)) { switch (Intrinsic->getIntrinsicID()) { default: return false; case Intrinsic::amdgcn_if: case Intrinsic::amdgcn_else: { ArrayRef Indices = ExtValue->getIndices(); return Indices.size() == 1 && Indices[0] == 1; } } } // If we have inline asm returning mixed SGPR and VGPR results, we inferred // divergent for the overall struct return. We need to override it in the // case we're extracting an SGPR component here. if (CI->isInlineAsm()) return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); return false; } bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl &OpIndexes, Intrinsic::ID IID) const { switch (IID) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: case Intrinsic::amdgcn_ds_fadd: case Intrinsic::amdgcn_ds_fmin: case Intrinsic::amdgcn_ds_fmax: case Intrinsic::amdgcn_is_shared: case Intrinsic::amdgcn_is_private: OpIndexes.push_back(0); return true; default: return false; } } Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const { auto IntrID = II->getIntrinsicID(); switch (IntrID) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: case Intrinsic::amdgcn_ds_fadd: case Intrinsic::amdgcn_ds_fmin: case Intrinsic::amdgcn_ds_fmax: { const ConstantInt *IsVolatile = cast(II->getArgOperand(4)); if (!IsVolatile->isZero()) return nullptr; Module *M = II->getParent()->getParent()->getParent(); Type *DestTy = II->getType(); Type *SrcTy = NewV->getType(); Function *NewDecl = Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); II->setArgOperand(0, NewV); II->setCalledFunction(NewDecl); return II; } case Intrinsic::amdgcn_is_shared: case Intrinsic::amdgcn_is_private: { unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; unsigned NewAS = NewV->getType()->getPointerAddressSpace(); LLVMContext &Ctx = NewV->getType()->getContext(); ConstantInt *NewVal = (TrueAS == NewAS) ? ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); return NewVal; } case Intrinsic::ptrmask: { unsigned OldAS = OldV->getType()->getPointerAddressSpace(); unsigned NewAS = NewV->getType()->getPointerAddressSpace(); Value *MaskOp = II->getArgOperand(1); Type *MaskTy = MaskOp->getType(); bool DoTruncate = false; const GCNTargetMachine &TM = static_cast(getTLI()->getTargetMachine()); if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { // All valid 64-bit to 32-bit casts work by chopping off the high // bits. Any masking only clearing the low bits will also apply in the new // address space. if (DL.getPointerSizeInBits(OldAS) != 64 || DL.getPointerSizeInBits(NewAS) != 32) return nullptr; // TODO: Do we need to thread more context in here? KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); if (Known.countMinLeadingOnes() < 32) return nullptr; DoTruncate = true; } IRBuilder<> B(II); if (DoTruncate) { MaskTy = B.getInt32Ty(); MaskOp = B.CreateTrunc(MaskOp, MaskTy); } return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, {NewV, MaskOp}); } default: return nullptr; } } InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, ArrayRef Mask, int Index, VectorType *SubTp) { Kind = improveShuffleKindFromMask(Kind, Mask); if (ST->hasVOP3PInsts()) { if (cast(VT)->getNumElements() == 2 && DL.getTypeSizeInBits(VT->getElementType()) == 16) { // With op_sel VOP3P instructions freely can access the low half or high // half of a register, so any swizzle is free. switch (Kind) { case TTI::SK_Broadcast: case TTI::SK_Reverse: case TTI::SK_PermuteSingleSrc: return 0; default: break; } } } return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp); } bool GCNTTIImpl::areInlineCompatible(const Function *Caller, const Function *Callee) const { const TargetMachine &TM = getTLI()->getTargetMachine(); const GCNSubtarget *CallerST = static_cast(TM.getSubtargetImpl(*Caller)); const GCNSubtarget *CalleeST = static_cast(TM.getSubtargetImpl(*Callee)); const FeatureBitset &CallerBits = CallerST->getFeatureBits(); const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) return false; // FIXME: dx10_clamp can just take the caller setting, but there seems to be // no way to support merge for backend defined attributes. AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); if (!CallerMode.isInlineCompatible(CalleeMode)) return false; if (Callee->hasFnAttribute(Attribute::AlwaysInline) || Callee->hasFnAttribute(Attribute::InlineHint)) return true; // Hack to make compile times reasonable. if (InlineMaxBB) { // Single BB does not increase total BB amount. if (Callee->size() == 1) return true; size_t BBSize = Caller->size() + Callee->size() - 1; return BBSize <= InlineMaxBB; } return true; } unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const { // If we have a pointer to private array passed into a function // it will not be optimized out, leaving scratch usage. // Increase the inline threshold to allow inlining in this case. uint64_t AllocaSize = 0; SmallPtrSet AIVisited; for (Value *PtrArg : CB->args()) { PointerType *Ty = dyn_cast(PtrArg->getType()); if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS && Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) continue; PtrArg = getUnderlyingObject(PtrArg); if (const AllocaInst *AI = dyn_cast(PtrArg)) { if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second) continue; AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType()); // If the amount of stack memory is excessive we will not be able // to get rid of the scratch anyway, bail out. if (AllocaSize > ArgAllocaCutoff) { AllocaSize = 0; break; } } } if (AllocaSize) return ArgAllocaCost; return 0; } void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP) { CommonTTI.getUnrollingPreferences(L, SE, UP); } void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) { CommonTTI.getPeelingPreferences(L, SE, PP); } int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const { return ST->hasFullRate64Ops() ? getFullRateInstrCost() : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind) : getQuarterRateInstrCost(CostKind); } R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F) : BaseT(TM, F.getParent()->getDataLayout()), ST(static_cast(TM->getSubtargetImpl(F))), TLI(ST->getTargetLowering()), CommonTTI(TM, F) {} unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { return 4 * 128; // XXX - 4 channels. Should these count as vector instead? } unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { return getHardwareNumberOfRegisters(Vec); } TypeSize R600TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { return TypeSize::getFixed(32); } unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { return 32; } unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) return 128; if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || AddrSpace == AMDGPUAS::REGION_ADDRESS) return 64; if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) return 32; if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) return 128; llvm_unreachable("unhandled address space"); } bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { // We allow vectorization of flat stores, even though we may need to decompose // them later if they may access private memory. We don't have enough context // here, and legalization can handle it. return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); } bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); } bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); } unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { // Disable unrolling if the loop is not vectorized. // TODO: Enable this again. if (VF == 1) return 1; return 8; } InstructionCost R600TTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) { if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) return Opcode == Instruction::PHI ? 0 : 1; // XXX - For some reason this isn't called for switch. switch (Opcode) { case Instruction::Br: case Instruction::Ret: return 10; default: return BaseT::getCFInstrCost(Opcode, CostKind, I); } } InstructionCost R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, unsigned Index) { switch (Opcode) { case Instruction::ExtractElement: case Instruction::InsertElement: { unsigned EltSize = DL.getTypeSizeInBits(cast(ValTy)->getElementType()); if (EltSize < 32) { return BaseT::getVectorInstrCost(Opcode, ValTy, Index); } // Extracts are just reads of a subregister, so are free. Inserts are // considered free because we don't want to have any cost for scalarizing // operations, and we don't have to copy into a different register class. // Dynamic indexing isn't free and is best avoided. return Index == ~0u ? 2 : 0; } default: return BaseT::getVectorInstrCost(Opcode, ValTy, Index); } } void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP) { CommonTTI.getUnrollingPreferences(L, SE, UP); } void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) { CommonTTI.getPeelingPreferences(L, SE, PP); }