//===- ARMISelLowering.h - ARM DAG Lowering Interface -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interfaces that ARM uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H #define LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H #include "MCTargetDesc/ARMBaseInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/MachineValueType.h" #include namespace llvm { class ARMSubtarget; class DataLayout; class FastISel; class FunctionLoweringInfo; class GlobalValue; class InstrItineraryData; class Instruction; class MachineBasicBlock; class MachineInstr; class SelectionDAG; class TargetLibraryInfo; class TargetMachine; class TargetRegisterInfo; class VectorType; namespace ARMISD { // ARM Specific DAG Nodes enum NodeType : unsigned { // Start the numbering where the builtin ops and target ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END, Wrapper, // Wrapper - A wrapper node for TargetConstantPool, // TargetExternalSymbol, and TargetGlobalAddress. WrapperPIC, // WrapperPIC - A wrapper node for TargetGlobalAddress in // PIC mode. WrapperJT, // WrapperJT - A wrapper node for TargetJumpTable // Add pseudo op to model memcpy for struct byval. COPY_STRUCT_BYVAL, CALL, // Function call. CALL_PRED, // Function call that's predicable. CALL_NOLINK, // Function call with branch not branch-and-link. tSECALL, // CMSE non-secure function call. BRCOND, // Conditional branch. BR_JT, // Jumptable branch. BR2_JT, // Jumptable branch (2 level - jumptable entry is a jump). RET_FLAG, // Return with a flag operand. SERET_FLAG, // CMSE Entry function return with a flag operand. INTRET_FLAG, // Interrupt return with an LR-offset and a flag operand. PIC_ADD, // Add with a PC operand and a PIC label. ASRL, // MVE long arithmetic shift right. LSRL, // MVE long shift right. LSLL, // MVE long shift left. CMP, // ARM compare instructions. CMN, // ARM CMN instructions. CMPZ, // ARM compare that sets only Z flag. CMPFP, // ARM VFP compare instruction, sets FPSCR. CMPFPE, // ARM VFP signalling compare instruction, sets FPSCR. CMPFPw0, // ARM VFP compare against zero instruction, sets FPSCR. CMPFPEw0, // ARM VFP signalling compare against zero instruction, sets // FPSCR. FMSTAT, // ARM fmstat instruction. CMOV, // ARM conditional move instructions. SUBS, // Flag-setting subtraction. SSAT, // Signed saturation USAT, // Unsigned saturation BCC_i64, SRL_FLAG, // V,Flag = srl_flag X -> srl X, 1 + save carry out. SRA_FLAG, // V,Flag = sra_flag X -> sra X, 1 + save carry out. RRX, // V = RRX X, Flag -> srl X, 1 + shift in carry flag. ADDC, // Add with carry ADDE, // Add using carry SUBC, // Sub with carry SUBE, // Sub using carry LSLS, // Shift left producing carry VMOVRRD, // double to two gprs. VMOVDRR, // Two gprs to double. VMOVSR, // move gpr to single, used for f32 literal constructed in a gpr EH_SJLJ_SETJMP, // SjLj exception handling setjmp. EH_SJLJ_LONGJMP, // SjLj exception handling longjmp. EH_SJLJ_SETUP_DISPATCH, // SjLj exception handling setup_dispatch. TC_RETURN, // Tail call return pseudo. THREAD_POINTER, DYN_ALLOC, // Dynamic allocation on the stack. MEMBARRIER_MCR, // Memory barrier (MCR) PRELOAD, // Preload WIN__CHKSTK, // Windows' __chkstk call to do stack probing. WIN__DBZCHK, // Windows' divide by zero check WLS, // Low-overhead loops, While Loop Start branch. See t2WhileLoopStart WLSSETUP, // Setup for the iteration count of a WLS. See t2WhileLoopSetup. LOOP_DEC, // Really a part of LE, performs the sub LE, // Low-overhead loops, Loop End PREDICATE_CAST, // Predicate cast for MVE i1 types VECTOR_REG_CAST, // Reinterpret the current contents of a vector register MVESEXT, // Legalization aids for extending a vector into two/four vectors. MVEZEXT, // or truncating two/four vectors into one. Eventually becomes MVETRUNC, // stack store/load sequence, if not optimized to anything else. VCMP, // Vector compare. VCMPZ, // Vector compare to zero. VTST, // Vector test bits. // Vector shift by vector VSHLs, // ...left/right by signed VSHLu, // ...left/right by unsigned // Vector shift by immediate: VSHLIMM, // ...left VSHRsIMM, // ...right (signed) VSHRuIMM, // ...right (unsigned) // Vector rounding shift by immediate: VRSHRsIMM, // ...right (signed) VRSHRuIMM, // ...right (unsigned) VRSHRNIMM, // ...right narrow // Vector saturating shift by immediate: VQSHLsIMM, // ...left (signed) VQSHLuIMM, // ...left (unsigned) VQSHLsuIMM, // ...left (signed to unsigned) VQSHRNsIMM, // ...right narrow (signed) VQSHRNuIMM, // ...right narrow (unsigned) VQSHRNsuIMM, // ...right narrow (signed to unsigned) // Vector saturating rounding shift by immediate: VQRSHRNsIMM, // ...right narrow (signed) VQRSHRNuIMM, // ...right narrow (unsigned) VQRSHRNsuIMM, // ...right narrow (signed to unsigned) // Vector shift and insert: VSLIIMM, // ...left VSRIIMM, // ...right // Vector get lane (VMOV scalar to ARM core register) // (These are used for 8- and 16-bit element types only.) VGETLANEu, // zero-extend vector extract element VGETLANEs, // sign-extend vector extract element // Vector move immediate and move negated immediate: VMOVIMM, VMVNIMM, // Vector move f32 immediate: VMOVFPIMM, // Move H <-> R, clearing top 16 bits VMOVrh, VMOVhr, // Vector duplicate: VDUP, VDUPLANE, // Vector shuffles: VEXT, // extract VREV64, // reverse elements within 64-bit doublewords VREV32, // reverse elements within 32-bit words VREV16, // reverse elements within 16-bit halfwords VZIP, // zip (interleave) VUZP, // unzip (deinterleave) VTRN, // transpose VTBL1, // 1-register shuffle with mask VTBL2, // 2-register shuffle with mask VMOVN, // MVE vmovn // MVE Saturating truncates VQMOVNs, // Vector (V) Saturating (Q) Move and Narrow (N), signed (s) VQMOVNu, // Vector (V) Saturating (Q) Move and Narrow (N), unsigned (u) // MVE float <> half converts VCVTN, // MVE vcvt f32 -> f16, truncating into either the bottom or top // lanes VCVTL, // MVE vcvt f16 -> f32, extending from either the bottom or top lanes // MVE VIDUP instruction, taking a start value and increment. VIDUP, // Vector multiply long: VMULLs, // ...signed VMULLu, // ...unsigned VQDMULH, // MVE vqdmulh instruction // MVE reductions VADDVs, // sign- or zero-extend the elements of a vector to i32, VADDVu, // add them all together, and return an i32 of their sum VADDVps, // Same as VADDV[su] but with a v4i1 predicate mask VADDVpu, VADDLVs, // sign- or zero-extend elements to i64 and sum, returning VADDLVu, // the low and high 32-bit halves of the sum VADDLVAs, // Same as VADDLV[su] but also add an input accumulator VADDLVAu, // provided as low and high halves VADDLVps, // Same as VADDLV[su] but with a v4i1 predicate mask VADDLVpu, VADDLVAps, // Same as VADDLVp[su] but with a v4i1 predicate mask VADDLVApu, VMLAVs, // sign- or zero-extend the elements of two vectors to i32, multiply // them VMLAVu, // and add the results together, returning an i32 of their sum VMLAVps, // Same as VMLAV[su] with a v4i1 predicate mask VMLAVpu, VMLALVs, // Same as VMLAV but with i64, returning the low and VMLALVu, // high 32-bit halves of the sum VMLALVps, // Same as VMLALV[su] with a v4i1 predicate mask VMLALVpu, VMLALVAs, // Same as VMLALV but also add an input accumulator VMLALVAu, // provided as low and high halves VMLALVAps, // Same as VMLALVA[su] with a v4i1 predicate mask VMLALVApu, VMINVu, // Find minimum unsigned value of a vector and register VMINVs, // Find minimum signed value of a vector and register VMAXVu, // Find maximum unsigned value of a vector and register VMAXVs, // Find maximum signed value of a vector and register SMULWB, // Signed multiply word by half word, bottom SMULWT, // Signed multiply word by half word, top UMLAL, // 64bit Unsigned Accumulate Multiply SMLAL, // 64bit Signed Accumulate Multiply UMAAL, // 64-bit Unsigned Accumulate Accumulate Multiply SMLALBB, // 64-bit signed accumulate multiply bottom, bottom 16 SMLALBT, // 64-bit signed accumulate multiply bottom, top 16 SMLALTB, // 64-bit signed accumulate multiply top, bottom 16 SMLALTT, // 64-bit signed accumulate multiply top, top 16 SMLALD, // Signed multiply accumulate long dual SMLALDX, // Signed multiply accumulate long dual exchange SMLSLD, // Signed multiply subtract long dual SMLSLDX, // Signed multiply subtract long dual exchange SMMLAR, // Signed multiply long, round and add SMMLSR, // Signed multiply long, subtract and round // Single Lane QADD8 and QADD16. Only the bottom lane. That's what the b // stands for. QADD8b, QSUB8b, QADD16b, QSUB16b, UQADD8b, UQSUB8b, UQADD16b, UQSUB16b, // Operands of the standard BUILD_VECTOR node are not legalized, which // is fine if BUILD_VECTORs are always lowered to shuffles or other // operations, but for ARM some BUILD_VECTORs are legal as-is and their // operands need to be legalized. Define an ARM-specific version of // BUILD_VECTOR for this purpose. BUILD_VECTOR, // Bit-field insert BFI, // Vector OR with immediate VORRIMM, // Vector AND with NOT of immediate VBICIMM, // Pseudo vector bitwise select VBSP, // Pseudo-instruction representing a memory copy using ldm/stm // instructions. MEMCPY, // Pseudo-instruction representing a memory copy using a tail predicated // loop MEMCPYLOOP, // Pseudo-instruction representing a memset using a tail predicated // loop MEMSETLOOP, // V8.1MMainline condition select CSINV, // Conditional select invert. CSNEG, // Conditional select negate. CSINC, // Conditional select increment. // Vector load N-element structure to all lanes: VLD1DUP = ISD::FIRST_TARGET_MEMORY_OPCODE, VLD2DUP, VLD3DUP, VLD4DUP, // NEON loads with post-increment base updates: VLD1_UPD, VLD2_UPD, VLD3_UPD, VLD4_UPD, VLD2LN_UPD, VLD3LN_UPD, VLD4LN_UPD, VLD1DUP_UPD, VLD2DUP_UPD, VLD3DUP_UPD, VLD4DUP_UPD, VLD1x2_UPD, VLD1x3_UPD, VLD1x4_UPD, // NEON stores with post-increment base updates: VST1_UPD, VST2_UPD, VST3_UPD, VST4_UPD, VST2LN_UPD, VST3LN_UPD, VST4LN_UPD, VST1x2_UPD, VST1x3_UPD, VST1x4_UPD, // Load/Store of dual registers LDRD, STRD }; } // end namespace ARMISD namespace ARM { /// Possible values of current rounding mode, which is specified in bits /// 23:22 of FPSCR. enum Rounding { RN = 0, // Round to Nearest RP = 1, // Round towards Plus infinity RM = 2, // Round towards Minus infinity RZ = 3, // Round towards Zero rmMask = 3 // Bit mask selecting rounding mode }; // Bit position of rounding mode bits in FPSCR. const unsigned RoundingBitsPos = 22; } // namespace ARM /// Define some predicates that are used for node matching. namespace ARM { bool isBitFieldInvertedMask(unsigned v); } // end namespace ARM //===--------------------------------------------------------------------===// // ARMTargetLowering - ARM Implementation of the TargetLowering interface class ARMTargetLowering : public TargetLowering { public: explicit ARMTargetLowering(const TargetMachine &TM, const ARMSubtarget &STI); unsigned getJumpTableEncoding() const override; bool useSoftFloat() const override; SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const override; const char *getTargetNodeName(unsigned Opcode) const override; bool isSelectSupported(SelectSupportKind Kind) const override { // ARM does not support scalar condition selects on vectors. return (Kind != ScalarCondVectorVal); } bool isReadOnly(const GlobalValue *GV) const; /// getSetCCResultType - Return the value type to use for ISD::SETCC. EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override; MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override; void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const override; SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const; SDValue PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const; SDValue PerformCMOVToBFICombine(SDNode *N, SelectionDAG &DAG) const; SDValue PerformIntrinsicCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue PerformMVEExtCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue PerformMVETruncCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &OriginalDemandedBits, const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override; bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override; /// allowsMisalignedMemoryAccesses - Returns true if the target allows /// unaligned memory accesses of the specified type. Returns whether it /// is "fast" by reference in the second argument. bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const override; EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const override; bool isTruncateFree(Type *SrcTy, Type *DstTy) const override; bool isTruncateFree(EVT SrcVT, EVT DstVT) const override; bool isZExtFree(SDValue Val, EVT VT2) const override; bool shouldSinkOperands(Instruction *I, SmallVectorImpl &Ops) const override; Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const override; bool isFNegFree(EVT VT) const override; bool isVectorLoadExtDesirable(SDValue ExtVal) const override; bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override; /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I = nullptr) const override; /// getScalingFactorCost - Return the cost of the scaling used in /// addressing mode represented by AM. /// If the AM is supported, the return value must be >= 0. /// If the AM is not supported, the return value must be negative. InstructionCost getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const override; bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const; /// Returns true if the addressing mode representing by AM is legal /// for the Thumb1 target, for a load/store of the specified type. bool isLegalT1ScaledAddressingMode(const AddrMode &AM, EVT VT) const; /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can /// compare a register against the immediate without having to materialize /// the immediate into a register. bool isLegalICmpImmediate(int64_t Imm) const override; /// isLegalAddImmediate - Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can /// add a register and the immediate without having to materialize /// the immediate into a register. bool isLegalAddImmediate(int64_t Imm) const override; /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override; /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override; void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const override; bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const override; bool ExpandInlineAsm(CallInst *CI) const override; ConstraintType getConstraintType(StringRef Constraint) const override; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const override; std::pair getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override; const char *LowerXConstraint(EVT ConstraintVT) const override; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. If hasMemory is /// true it means one of the asm constraint of the inline asm instruction /// being processed is 'm'. void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const override; unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override { if (ConstraintCode == "Q") return InlineAsm::Constraint_Q; else if (ConstraintCode.size() == 2) { if (ConstraintCode[0] == 'U') { switch(ConstraintCode[1]) { default: break; case 'm': return InlineAsm::Constraint_Um; case 'n': return InlineAsm::Constraint_Un; case 'q': return InlineAsm::Constraint_Uq; case 's': return InlineAsm::Constraint_Us; case 't': return InlineAsm::Constraint_Ut; case 'v': return InlineAsm::Constraint_Uv; case 'y': return InlineAsm::Constraint_Uy; } } } return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } const ARMSubtarget* getSubtarget() const { return Subtarget; } /// getRegClassFor - Return the register class that should be used for the /// specified value type. const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent = false) const override; bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, unsigned &PrefAlign) const override; /// createFastISel - This method returns a target specific FastISel object, /// or null if the target does not support "fast" ISel. FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const override; Sched::Preference getSchedulingPreference(SDNode *N) const override; bool preferZeroCompareBranch() const override { return true; } bool isShuffleMaskLegal(ArrayRef M, EVT VT) const override; bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize = false) const override; bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override; /// Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override; /// Return true if EXTRACT_SUBVECTOR is cheap for this result type /// with this index. bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override; bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const override { // Using overflow ops for overflow checks only should beneficial on ARM. return TargetLowering::shouldFormOverflowOp(Opcode, VT, true); } /// Returns true if an argument of type Ty needs to be passed in a /// contiguous block of registers in calling convention CallConv. bool functionArgumentNeedsConsecutiveRegisters( Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const override; /// If a physical register, this returns the register that receives the /// exception address on entry to an EH pad. Register getExceptionPointerRegister(const Constant *PersonalityFn) const override; /// If a physical register, this returns the register that receives the /// exception typeid on entry to a landing pad. Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override; Instruction *makeDMB(IRBuilderBase &Builder, ARM_MB::MemBOpt Domain) const; Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const override; Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const override; void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const override; Instruction *emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override; Instruction *emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override; unsigned getMaxSupportedInterleaveFactor() const override; bool lowerInterleavedLoad(LoadInst *LI, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor) const override; bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const override; bool shouldInsertFencesForAtomic(const Instruction *I) const override; TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override; bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override; TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override; TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override; bool useLoadStackGuardNode() const override; void insertSSPDeclarations(Module &M) const override; Value *getSDagStackGuard(const Module &M) const override; Function *getSSPStackGuardCheck(const Module &M) const override; bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const override; bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT, const SelectionDAG &DAG) const override { // Do not merge to larger than i32. return (MemVT.getSizeInBits() <= 32); } bool isCheapToSpeculateCttz() const override; bool isCheapToSpeculateCtlz() const override; bool convertSetCCLogicToBitwiseLogic(EVT VT) const override { return VT.isScalarInteger(); } bool supportSwiftError() const override { return true; } bool hasStandaloneRem(EVT VT) const override { return HasStandaloneRem; } bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override; CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isVarArg) const; CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC, bool isVarArg) const; /// Returns true if \p VecTy is a legal interleaved access type. This /// function checks the vector element type and the overall width of the /// vector. bool isLegalInterleavedAccessType(unsigned Factor, FixedVectorType *VecTy, Align Alignment, const DataLayout &DL) const; bool alignLoopsWithOptSize() const override; /// Returns the number of interleaved accesses that will be generated when /// lowering accesses of the given type. unsigned getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL) const; void finalizeLowering(MachineFunction &MF) const override; /// Return the correct alignment for the current calling convention. Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const override; bool isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const override; bool shouldFoldConstantShiftPairToMask(const SDNode *N, CombineLevel Level) const override; bool preferIncOfAddToSubOfNot(EVT VT) const override; protected: std::pair findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const override; private: /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when generating code for different targets. const ARMSubtarget *Subtarget; const TargetRegisterInfo *RegInfo; const InstrItineraryData *Itins; /// ARMPCLabelIndex - Keep track of the number of ARM PC labels created. unsigned ARMPCLabelIndex; // TODO: remove this, and have shouldInsertFencesForAtomic do the proper // check. bool InsertFencesForAtomic; bool HasStandaloneRem = true; void addTypeForNEON(MVT VT, MVT PromotedLdStVT); void addDRTypeForNEON(MVT VT); void addQRTypeForNEON(MVT VT); std::pair getARMXALUOOp(SDValue Op, SelectionDAG &DAG, SDValue &ARMcc) const; using RegsToPassVector = SmallVector, 8>; void PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg, RegsToPassVector &RegsToPass, CCValAssign &VA, CCValAssign &NextVA, SDValue &StackPtr, SmallVectorImpl &MemOpChains, bool IsTailCall, int SPDiff) const; SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, SDValue &Root, SelectionDAG &DAG, const SDLoc &dl) const; CallingConv::ID getEffectiveCallingConv(CallingConv::ID CC, bool isVarArg) const; CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return, bool isVarArg) const; std::pair computeAddrForCallArg(const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, SDValue StackPtr, bool IsTailCall, int SPDiff) const; SDValue LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const; SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddressWindows(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const; SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA, SelectionDAG &DAG, TLSModel::Model model) const; SDValue LowerGlobalTLSAddressDarwin(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddressWindows(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const; SDValue LowerUnsignedALUO(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantFP(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const; SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const; SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDivRem(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDIV_Windows(SDValue Op, SelectionDAG &DAG, bool Signed) const; void ExpandDIV_Windows(SDValue Op, SelectionDAG &DAG, bool Signed, SmallVectorImpl &Results) const; SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const; SDValue LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG, bool Signed, SDValue &Chain) const; SDValue LowerREM(SDNode *N, SelectionDAG &DAG) const; SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFSETCC(SDValue Op, SelectionDAG &DAG) const; void lowerABS(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const; void LowerLOAD(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const; Register getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const override; SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const override; bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override; SDValue MoveToHPR(const SDLoc &dl, SelectionDAG &DAG, MVT LocVT, MVT ValVT, SDValue Val) const; SDValue MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG, MVT LocVT, MVT ValVT, SDValue Val) const; SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, bool isThisReturn, SDValue ThisVal) const; bool supportSplitCSR(MachineFunction *MF) const override { return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && MF->getFunction().hasFnAttribute(Attribute::NoUnwind); } void initializeSplitCSR(MachineBasicBlock *Entry) const override; void insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl &Exits) const override; bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, Optional CC) const override; SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, Optional CC) const override; SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const override; int StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, const Value *OrigArg, unsigned InRegsParamRecordIdx, int ArgOffset, unsigned ArgSize) const; void VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, unsigned ArgOffset, unsigned TotalArgRegsSaveSize, bool ForceMutable = false) const; SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const override; /// HandleByVal - Target-specific cleanup for ByVal support. void HandleByVal(CCState *, unsigned &, Align) const override; /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool IsEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG &DAG, const bool isIndirect) const; bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const override; SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const override; bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override; bool mayBeEmittedAsTailCall(const CallInst *CI) const override; bool shouldConsiderGEPOffsetSplit() const override { return true; } bool isUnsupportedFloatingType(EVT VT) const; SDValue getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal, SDValue TrueVal, SDValue ARMcc, SDValue CCR, SDValue Cmp, SelectionDAG &DAG) const; SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &ARMcc, SelectionDAG &DAG, const SDLoc &dl) const; SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &dl, bool Signaling = false) const; SDValue duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const; SDValue OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const; void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB, MachineBasicBlock *DispatchBB, int FI) const; void EmitSjLjDispatchBlock(MachineInstr &MI, MachineBasicBlock *MBB) const; bool RemapAddSubWithFlags(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitStructByval(MachineInstr &MI, MachineBasicBlock *MBB) const; MachineBasicBlock *EmitLowered__chkstk(MachineInstr &MI, MachineBasicBlock *MBB) const; MachineBasicBlock *EmitLowered__dbzchk(MachineInstr &MI, MachineBasicBlock *MBB) const; void addMVEVectorTypes(bool HasMVEFP); void addAllExtLoads(const MVT From, const MVT To, LegalizeAction Action); void setAllExpand(MVT VT); }; enum VMOVModImmType { VMOVModImm, VMVNModImm, MVEVMVNModImm, OtherModImm }; namespace ARM { FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo); } // end namespace ARM } // end namespace llvm #endif // LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H