//===- Thumb2InstrInfo.cpp - Thumb-2 Instruction Information --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the Thumb-2 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "Thumb2InstrInfo.h" #include "ARMMachineFunctionInfo.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetMachine.h" #include using namespace llvm; static cl::opt OldT2IfCvt("old-thumb2-ifcvt", cl::Hidden, cl::desc("Use old-style Thumb2 if-conversion heuristics"), cl::init(false)); static cl::opt PreferNoCSEL("prefer-no-csel", cl::Hidden, cl::desc("Prefer predicated Move to CSEL"), cl::init(false)); Thumb2InstrInfo::Thumb2InstrInfo(const ARMSubtarget &STI) : ARMBaseInstrInfo(STI) {} /// Return the noop instruction to use for a noop. MCInst Thumb2InstrInfo::getNop() const { return MCInstBuilder(ARM::tHINT).addImm(0).addImm(ARMCC::AL).addReg(0); } unsigned Thumb2InstrInfo::getUnindexedOpcode(unsigned Opc) const { // FIXME return 0; } void Thumb2InstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const { MachineBasicBlock *MBB = Tail->getParent(); ARMFunctionInfo *AFI = MBB->getParent()->getInfo(); if (!AFI->hasITBlocks() || Tail->isBranch()) { TargetInstrInfo::ReplaceTailWithBranchTo(Tail, NewDest); return; } // If the first instruction of Tail is predicated, we may have to update // the IT instruction. Register PredReg; ARMCC::CondCodes CC = getInstrPredicate(*Tail, PredReg); MachineBasicBlock::iterator MBBI = Tail; if (CC != ARMCC::AL) // Expecting at least the t2IT instruction before it. --MBBI; // Actually replace the tail. TargetInstrInfo::ReplaceTailWithBranchTo(Tail, NewDest); // Fix up IT. if (CC != ARMCC::AL) { MachineBasicBlock::iterator E = MBB->begin(); unsigned Count = 4; // At most 4 instructions in an IT block. while (Count && MBBI != E) { if (MBBI->isDebugInstr()) { --MBBI; continue; } if (MBBI->getOpcode() == ARM::t2IT) { unsigned Mask = MBBI->getOperand(1).getImm(); if (Count == 4) MBBI->eraseFromParent(); else { unsigned MaskOn = 1 << Count; unsigned MaskOff = ~(MaskOn - 1); MBBI->getOperand(1).setImm((Mask & MaskOff) | MaskOn); } return; } --MBBI; --Count; } // Ctrl flow can reach here if branch folding is run before IT block // formation pass. } } bool Thumb2InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { while (MBBI->isDebugInstr()) { ++MBBI; if (MBBI == MBB.end()) return false; } Register PredReg; return getITInstrPredicate(*MBBI, PredReg) == ARMCC::AL; } MachineInstr * Thumb2InstrInfo::optimizeSelect(MachineInstr &MI, SmallPtrSetImpl &SeenMIs, bool PreferFalse) const { // Try to use the base optimizeSelect, which uses canFoldIntoMOVCC to fold the // MOVCC into another instruction. If that fails on 8.1-M fall back to using a // CSEL. MachineInstr *RV = ARMBaseInstrInfo::optimizeSelect(MI, SeenMIs, PreferFalse); if (!RV && getSubtarget().hasV8_1MMainlineOps() && !PreferNoCSEL) { Register DestReg = MI.getOperand(0).getReg(); if (!DestReg.isVirtual()) return nullptr; MachineInstrBuilder NewMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::t2CSEL), DestReg) .add(MI.getOperand(2)) .add(MI.getOperand(1)) .add(MI.getOperand(3)); SeenMIs.insert(NewMI); return NewMI; } return RV; } void Thumb2InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const { // Handle SPR, DPR, and QPR copies. if (!ARM::GPRRegClass.contains(DestReg, SrcReg)) return ARMBaseInstrInfo::copyPhysReg(MBB, I, DL, DestReg, SrcReg, KillSrc); BuildMI(MBB, I, DL, get(ARM::tMOVr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)) .add(predOps(ARMCC::AL)); } void Thumb2InstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); if (ARM::GPRRegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(ARM::t2STRi12)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI) .addImm(0) .addMemOperand(MMO) .add(predOps(ARMCC::AL)); return; } if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { // Thumb2 STRD expects its dest-registers to be in rGPR. Not a problem for // gsub_0, but needs an extra constraint for gsub_1 (which could be sp // otherwise). if (Register::isVirtualRegister(SrcReg)) { MachineRegisterInfo *MRI = &MF.getRegInfo(); MRI->constrainRegClass(SrcReg, &ARM::GPRPairnospRegClass); } MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::t2STRDi8)); AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); MIB.addFrameIndex(FI).addImm(0).addMemOperand(MMO).add(predOps(ARMCC::AL)); return; } ARMBaseInstrInfo::storeRegToStackSlot(MBB, I, SrcReg, isKill, FI, RC, TRI); } void Thumb2InstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); if (ARM::GPRRegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(ARM::t2LDRi12), DestReg) .addFrameIndex(FI) .addImm(0) .addMemOperand(MMO) .add(predOps(ARMCC::AL)); return; } if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { // Thumb2 LDRD expects its dest-registers to be in rGPR. Not a problem for // gsub_0, but needs an extra constraint for gsub_1 (which could be sp // otherwise). if (Register::isVirtualRegister(DestReg)) { MachineRegisterInfo *MRI = &MF.getRegInfo(); MRI->constrainRegClass(DestReg, &ARM::GPRPairnospRegClass); } MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::t2LDRDi8)); AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); MIB.addFrameIndex(FI).addImm(0).addMemOperand(MMO).add(predOps(ARMCC::AL)); if (Register::isPhysicalRegister(DestReg)) MIB.addReg(DestReg, RegState::ImplicitDefine); return; } ARMBaseInstrInfo::loadRegFromStackSlot(MBB, I, DestReg, FI, RC, TRI); } void Thumb2InstrInfo::expandLoadStackGuard( MachineBasicBlock::iterator MI) const { MachineFunction &MF = *MI->getParent()->getParent(); if (MF.getTarget().isPositionIndependent()) expandLoadStackGuardBase(MI, ARM::t2MOV_ga_pcrel, ARM::t2LDRi12); else expandLoadStackGuardBase(MI, ARM::t2MOVi32imm, ARM::t2LDRi12); } MachineInstr *Thumb2InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const { switch (MI.getOpcode()) { case ARM::MVE_VMAXNMAf16: case ARM::MVE_VMAXNMAf32: case ARM::MVE_VMINNMAf16: case ARM::MVE_VMINNMAf32: // Don't allow predicated instructions to be commuted. if (getVPTInstrPredicate(MI) != ARMVCC::None) return nullptr; } return ARMBaseInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); } void llvm::emitT2RegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, Register DestReg, Register BaseReg, int NumBytes, ARMCC::CondCodes Pred, Register PredReg, const ARMBaseInstrInfo &TII, unsigned MIFlags) { if (NumBytes == 0 && DestReg != BaseReg) { BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), DestReg) .addReg(BaseReg, RegState::Kill) .addImm((unsigned)Pred).addReg(PredReg).setMIFlags(MIFlags); return; } bool isSub = NumBytes < 0; if (isSub) NumBytes = -NumBytes; // If profitable, use a movw or movt to materialize the offset. // FIXME: Use the scavenger to grab a scratch register. if (DestReg != ARM::SP && DestReg != BaseReg && NumBytes >= 4096 && ARM_AM::getT2SOImmVal(NumBytes) == -1) { bool Fits = false; if (NumBytes < 65536) { // Use a movw to materialize the 16-bit constant. BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), DestReg) .addImm(NumBytes) .addImm((unsigned)Pred).addReg(PredReg).setMIFlags(MIFlags); Fits = true; } else if ((NumBytes & 0xffff) == 0) { // Use a movt to materialize the 32-bit constant. BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), DestReg) .addReg(DestReg) .addImm(NumBytes >> 16) .addImm((unsigned)Pred).addReg(PredReg).setMIFlags(MIFlags); Fits = true; } if (Fits) { if (isSub) { BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), DestReg) .addReg(BaseReg) .addReg(DestReg, RegState::Kill) .add(predOps(Pred, PredReg)) .add(condCodeOp()) .setMIFlags(MIFlags); } else { // Here we know that DestReg is not SP but we do not // know anything about BaseReg. t2ADDrr is an invalid // instruction is SP is used as the second argument, but // is fine if SP is the first argument. To be sure we // do not generate invalid encoding, put BaseReg first. BuildMI(MBB, MBBI, dl, TII.get(ARM::t2ADDrr), DestReg) .addReg(BaseReg) .addReg(DestReg, RegState::Kill) .add(predOps(Pred, PredReg)) .add(condCodeOp()) .setMIFlags(MIFlags); } return; } } while (NumBytes) { unsigned ThisVal = NumBytes; unsigned Opc = 0; if (DestReg == ARM::SP && BaseReg != ARM::SP) { // mov sp, rn. Note t2MOVr cannot be used. BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), DestReg) .addReg(BaseReg) .setMIFlags(MIFlags) .add(predOps(ARMCC::AL)); BaseReg = ARM::SP; continue; } assert((DestReg != ARM::SP || BaseReg == ARM::SP) && "Writing to SP, from other register."); // Try to use T1, as it smaller if ((DestReg == ARM::SP) && (ThisVal < ((1 << 7) - 1) * 4)) { assert((ThisVal & 3) == 0 && "Stack update is not multiple of 4?"); Opc = isSub ? ARM::tSUBspi : ARM::tADDspi; BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) .addReg(BaseReg) .addImm(ThisVal / 4) .setMIFlags(MIFlags) .add(predOps(ARMCC::AL)); break; } bool HasCCOut = true; int ImmIsT2SO = ARM_AM::getT2SOImmVal(ThisVal); bool ToSP = DestReg == ARM::SP; unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; unsigned t2SUBi12 = ToSP ? ARM::t2SUBspImm12 : ARM::t2SUBri12; unsigned t2ADDi12 = ToSP ? ARM::t2ADDspImm12 : ARM::t2ADDri12; Opc = isSub ? t2SUB : t2ADD; // Prefer T2: sub rd, rn, so_imm | sub sp, sp, so_imm if (ImmIsT2SO != -1) { NumBytes = 0; } else if (ThisVal < 4096) { // Prefer T3 if can make it in a single go: subw rd, rn, imm12 | subw sp, // sp, imm12 Opc = isSub ? t2SUBi12 : t2ADDi12; HasCCOut = false; NumBytes = 0; } else { // Use one T2 instruction to reduce NumBytes // FIXME: Move this to ARMAddressingModes.h? unsigned RotAmt = countLeadingZeros(ThisVal); ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt); NumBytes &= ~ThisVal; assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); } // Build the new ADD / SUB. MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) .addReg(BaseReg, RegState::Kill) .addImm(ThisVal) .add(predOps(ARMCC::AL)) .setMIFlags(MIFlags); if (HasCCOut) MIB.add(condCodeOp()); BaseReg = DestReg; } } static unsigned negativeOffsetOpcode(unsigned opcode) { switch (opcode) { case ARM::t2LDRi12: return ARM::t2LDRi8; case ARM::t2LDRHi12: return ARM::t2LDRHi8; case ARM::t2LDRBi12: return ARM::t2LDRBi8; case ARM::t2LDRSHi12: return ARM::t2LDRSHi8; case ARM::t2LDRSBi12: return ARM::t2LDRSBi8; case ARM::t2STRi12: return ARM::t2STRi8; case ARM::t2STRBi12: return ARM::t2STRBi8; case ARM::t2STRHi12: return ARM::t2STRHi8; case ARM::t2PLDi12: return ARM::t2PLDi8; case ARM::t2PLDWi12: return ARM::t2PLDWi8; case ARM::t2PLIi12: return ARM::t2PLIi8; case ARM::t2LDRi8: case ARM::t2LDRHi8: case ARM::t2LDRBi8: case ARM::t2LDRSHi8: case ARM::t2LDRSBi8: case ARM::t2STRi8: case ARM::t2STRBi8: case ARM::t2STRHi8: case ARM::t2PLDi8: case ARM::t2PLDWi8: case ARM::t2PLIi8: return opcode; default: llvm_unreachable("unknown thumb2 opcode."); } } static unsigned positiveOffsetOpcode(unsigned opcode) { switch (opcode) { case ARM::t2LDRi8: return ARM::t2LDRi12; case ARM::t2LDRHi8: return ARM::t2LDRHi12; case ARM::t2LDRBi8: return ARM::t2LDRBi12; case ARM::t2LDRSHi8: return ARM::t2LDRSHi12; case ARM::t2LDRSBi8: return ARM::t2LDRSBi12; case ARM::t2STRi8: return ARM::t2STRi12; case ARM::t2STRBi8: return ARM::t2STRBi12; case ARM::t2STRHi8: return ARM::t2STRHi12; case ARM::t2PLDi8: return ARM::t2PLDi12; case ARM::t2PLDWi8: return ARM::t2PLDWi12; case ARM::t2PLIi8: return ARM::t2PLIi12; case ARM::t2LDRi12: case ARM::t2LDRHi12: case ARM::t2LDRBi12: case ARM::t2LDRSHi12: case ARM::t2LDRSBi12: case ARM::t2STRi12: case ARM::t2STRBi12: case ARM::t2STRHi12: case ARM::t2PLDi12: case ARM::t2PLDWi12: case ARM::t2PLIi12: return opcode; default: llvm_unreachable("unknown thumb2 opcode."); } } static unsigned immediateOffsetOpcode(unsigned opcode) { switch (opcode) { case ARM::t2LDRs: return ARM::t2LDRi12; case ARM::t2LDRHs: return ARM::t2LDRHi12; case ARM::t2LDRBs: return ARM::t2LDRBi12; case ARM::t2LDRSHs: return ARM::t2LDRSHi12; case ARM::t2LDRSBs: return ARM::t2LDRSBi12; case ARM::t2STRs: return ARM::t2STRi12; case ARM::t2STRBs: return ARM::t2STRBi12; case ARM::t2STRHs: return ARM::t2STRHi12; case ARM::t2PLDs: return ARM::t2PLDi12; case ARM::t2PLDWs: return ARM::t2PLDWi12; case ARM::t2PLIs: return ARM::t2PLIi12; case ARM::t2LDRi12: case ARM::t2LDRHi12: case ARM::t2LDRBi12: case ARM::t2LDRSHi12: case ARM::t2LDRSBi12: case ARM::t2STRi12: case ARM::t2STRBi12: case ARM::t2STRHi12: case ARM::t2PLDi12: case ARM::t2PLDWi12: case ARM::t2PLIi12: case ARM::t2LDRi8: case ARM::t2LDRHi8: case ARM::t2LDRBi8: case ARM::t2LDRSHi8: case ARM::t2LDRSBi8: case ARM::t2STRi8: case ARM::t2STRBi8: case ARM::t2STRHi8: case ARM::t2PLDi8: case ARM::t2PLDWi8: case ARM::t2PLIi8: return opcode; default: llvm_unreachable("unknown thumb2 opcode."); } } bool llvm::rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, Register FrameReg, int &Offset, const ARMBaseInstrInfo &TII, const TargetRegisterInfo *TRI) { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MI.getDesc(); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); bool isSub = false; MachineFunction &MF = *MI.getParent()->getParent(); const TargetRegisterClass *RegClass = TII.getRegClass(Desc, FrameRegIdx, TRI, MF); // Memory operands in inline assembly always use AddrModeT2_i12. if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) AddrMode = ARMII::AddrModeT2_i12; // FIXME. mode for thumb2? const bool IsSP = Opcode == ARM::t2ADDspImm12 || Opcode == ARM::t2ADDspImm; if (IsSP || Opcode == ARM::t2ADDri || Opcode == ARM::t2ADDri12) { Offset += MI.getOperand(FrameRegIdx+1).getImm(); Register PredReg; if (Offset == 0 && getInstrPredicate(MI, PredReg) == ARMCC::AL && !MI.definesRegister(ARM::CPSR)) { // Turn it into a move. MI.setDesc(TII.get(ARM::tMOVr)); MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); // Remove offset and remaining explicit predicate operands. do MI.RemoveOperand(FrameRegIdx+1); while (MI.getNumOperands() > FrameRegIdx+1); MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); MIB.add(predOps(ARMCC::AL)); return true; } bool HasCCOut = (Opcode != ARM::t2ADDspImm12 && Opcode != ARM::t2ADDri12); if (Offset < 0) { Offset = -Offset; isSub = true; MI.setDesc(IsSP ? TII.get(ARM::t2SUBspImm) : TII.get(ARM::t2SUBri)); } else { MI.setDesc(IsSP ? TII.get(ARM::t2ADDspImm) : TII.get(ARM::t2ADDri)); } // Common case: small offset, fits into instruction. if (ARM_AM::getT2SOImmVal(Offset) != -1) { MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); // Add cc_out operand if the original instruction did not have one. if (!HasCCOut) MI.addOperand(MachineOperand::CreateReg(0, false)); Offset = 0; return true; } // Another common case: imm12. if (Offset < 4096 && (!HasCCOut || MI.getOperand(MI.getNumOperands()-1).getReg() == 0)) { unsigned NewOpc = isSub ? IsSP ? ARM::t2SUBspImm12 : ARM::t2SUBri12 : IsSP ? ARM::t2ADDspImm12 : ARM::t2ADDri12; MI.setDesc(TII.get(NewOpc)); MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); // Remove the cc_out operand. if (HasCCOut) MI.RemoveOperand(MI.getNumOperands()-1); Offset = 0; return true; } // Otherwise, extract 8 adjacent bits from the immediate into this // t2ADDri/t2SUBri. unsigned RotAmt = countLeadingZeros(Offset); unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xff000000U, RotAmt); // We will handle these bits from offset, clear them. Offset &= ~ThisImmVal; assert(ARM_AM::getT2SOImmVal(ThisImmVal) != -1 && "Bit extraction didn't work?"); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); // Add cc_out operand if the original instruction did not have one. if (!HasCCOut) MI.addOperand(MachineOperand::CreateReg(0, false)); } else { // AddrMode4 and AddrMode6 cannot handle any offset. if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6) return false; // AddrModeT2_so cannot handle any offset. If there is no offset // register then we change to an immediate version. unsigned NewOpc = Opcode; if (AddrMode == ARMII::AddrModeT2_so) { Register OffsetReg = MI.getOperand(FrameRegIdx + 1).getReg(); if (OffsetReg != 0) { MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); return Offset == 0; } MI.RemoveOperand(FrameRegIdx+1); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(0); NewOpc = immediateOffsetOpcode(Opcode); AddrMode = ARMII::AddrModeT2_i12; } unsigned NumBits = 0; unsigned Scale = 1; if (AddrMode == ARMII::AddrModeT2_i8 || AddrMode == ARMII::AddrModeT2_i12) { // i8 supports only negative, and i12 supports only positive, so // based on Offset sign convert Opcode to the appropriate // instruction Offset += MI.getOperand(FrameRegIdx+1).getImm(); if (Offset < 0) { NewOpc = negativeOffsetOpcode(Opcode); NumBits = 8; isSub = true; Offset = -Offset; } else { NewOpc = positiveOffsetOpcode(Opcode); NumBits = 12; } } else if (AddrMode == ARMII::AddrMode5) { // VFP address mode. const MachineOperand &OffOp = MI.getOperand(FrameRegIdx+1); int InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm()); if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 8; Scale = 4; Offset += InstrOffs * 4; assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); if (Offset < 0) { Offset = -Offset; isSub = true; } } else if (AddrMode == ARMII::AddrMode5FP16) { // VFP address mode. const MachineOperand &OffOp = MI.getOperand(FrameRegIdx+1); int InstrOffs = ARM_AM::getAM5FP16Offset(OffOp.getImm()); if (ARM_AM::getAM5FP16Op(OffOp.getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 8; Scale = 2; Offset += InstrOffs * 2; assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); if (Offset < 0) { Offset = -Offset; isSub = true; } } else if (AddrMode == ARMII::AddrModeT2_i7s4 || AddrMode == ARMII::AddrModeT2_i7s2 || AddrMode == ARMII::AddrModeT2_i7) { Offset += MI.getOperand(FrameRegIdx + 1).getImm(); unsigned OffsetMask; switch (AddrMode) { case ARMII::AddrModeT2_i7s4: NumBits = 9; OffsetMask = 0x3; break; case ARMII::AddrModeT2_i7s2: NumBits = 8; OffsetMask = 0x1; break; default: NumBits = 7; OffsetMask = 0x0; break; } // MCInst operand expects already scaled value. Scale = 1; assert((Offset & OffsetMask) == 0 && "Can't encode this offset!"); (void)OffsetMask; // squash unused-variable warning at -NDEBUG } else if (AddrMode == ARMII::AddrModeT2_i8s4) { Offset += MI.getOperand(FrameRegIdx + 1).getImm(); NumBits = 8 + 2; // MCInst operand expects already scaled value. Scale = 1; assert((Offset & 3) == 0 && "Can't encode this offset!"); } else if (AddrMode == ARMII::AddrModeT2_ldrex) { Offset += MI.getOperand(FrameRegIdx + 1).getImm() * 4; NumBits = 8; // 8 bits scaled by 4 Scale = 4; assert((Offset & 3) == 0 && "Can't encode this offset!"); } else { llvm_unreachable("Unsupported addressing mode!"); } if (NewOpc != Opcode) MI.setDesc(TII.get(NewOpc)); MachineOperand &ImmOp = MI.getOperand(FrameRegIdx+1); // Attempt to fold address computation // Common case: small offset, fits into instruction. We need to make sure // the register class is correct too, for instructions like the MVE // VLDRH.32, which only accepts low tGPR registers. int ImmedOffset = Offset / Scale; unsigned Mask = (1 << NumBits) - 1; if ((unsigned)Offset <= Mask * Scale && (Register::isVirtualRegister(FrameReg) || RegClass->contains(FrameReg))) { if (Register::isVirtualRegister(FrameReg)) { // Make sure the register class for the virtual register is correct MachineRegisterInfo *MRI = &MF.getRegInfo(); if (!MRI->constrainRegClass(FrameReg, RegClass)) llvm_unreachable("Unable to constrain virtual register class."); } // Replace the FrameIndex with fp/sp MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); if (isSub) { if (AddrMode == ARMII::AddrMode5 || AddrMode == ARMII::AddrMode5FP16) // FIXME: Not consistent. ImmedOffset |= 1 << NumBits; else ImmedOffset = -ImmedOffset; } ImmOp.ChangeToImmediate(ImmedOffset); Offset = 0; return true; } // Otherwise, offset doesn't fit. Pull in what we can to simplify ImmedOffset = ImmedOffset & Mask; if (isSub) { if (AddrMode == ARMII::AddrMode5 || AddrMode == ARMII::AddrMode5FP16) // FIXME: Not consistent. ImmedOffset |= 1 << NumBits; else { ImmedOffset = -ImmedOffset; if (ImmedOffset == 0) // Change the opcode back if the encoded offset is zero. MI.setDesc(TII.get(positiveOffsetOpcode(NewOpc))); } } ImmOp.ChangeToImmediate(ImmedOffset); Offset &= ~(Mask*Scale); } Offset = (isSub) ? -Offset : Offset; return Offset == 0 && (Register::isVirtualRegister(FrameReg) || RegClass->contains(FrameReg)); } ARMCC::CondCodes llvm::getITInstrPredicate(const MachineInstr &MI, Register &PredReg) { unsigned Opc = MI.getOpcode(); if (Opc == ARM::tBcc || Opc == ARM::t2Bcc) return ARMCC::AL; return getInstrPredicate(MI, PredReg); } int llvm::findFirstVPTPredOperandIdx(const MachineInstr &MI) { const MCInstrDesc &MCID = MI.getDesc(); if (!MCID.OpInfo) return -1; for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) if (ARM::isVpred(MCID.OpInfo[i].OperandType)) return i; return -1; } ARMVCC::VPTCodes llvm::getVPTInstrPredicate(const MachineInstr &MI, Register &PredReg) { int PIdx = findFirstVPTPredOperandIdx(MI); if (PIdx == -1) { PredReg = 0; return ARMVCC::None; } PredReg = MI.getOperand(PIdx+1).getReg(); return (ARMVCC::VPTCodes)MI.getOperand(PIdx).getImm(); } void llvm::recomputeVPTBlockMask(MachineInstr &Instr) { assert(isVPTOpcode(Instr.getOpcode()) && "Not a VPST or VPT Instruction!"); MachineOperand &MaskOp = Instr.getOperand(0); assert(MaskOp.isImm() && "Operand 0 is not the block mask of the VPT/VPST?!"); MachineBasicBlock::iterator Iter = ++Instr.getIterator(), End = Instr.getParent()->end(); // Verify that the instruction after the VPT/VPST is predicated (it should // be), and skip it. assert( getVPTInstrPredicate(*Iter) == ARMVCC::Then && "VPT/VPST should be followed by an instruction with a 'then' predicate!"); ++Iter; // Iterate over the predicated instructions, updating the BlockMask as we go. ARM::PredBlockMask BlockMask = ARM::PredBlockMask::T; while (Iter != End) { ARMVCC::VPTCodes Pred = getVPTInstrPredicate(*Iter); if (Pred == ARMVCC::None) break; BlockMask = expandPredBlockMask(BlockMask, Pred); ++Iter; } // Rewrite the BlockMask. MaskOp.setImm((int64_t)(BlockMask)); }