//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements a register stacking pass. /// /// This pass reorders instructions to put register uses and defs in an order /// such that they form single-use expression trees. Registers fitting this form /// are then marked as "stackified", meaning references to them are replaced by /// "push" and "pop" from the value stack. /// /// This is primarily a code size optimization, since temporary values on the /// value stack don't need to be named. /// //===----------------------------------------------------------------------===// #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* #include "Utils/WebAssemblyUtilities.h" #include "WebAssembly.h" #include "WebAssemblyDebugValueManager.h" #include "WebAssemblyMachineFunctionInfo.h" #include "WebAssemblySubtarget.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "wasm-reg-stackify" namespace { class WebAssemblyRegStackify final : public MachineFunctionPass { StringRef getPassName() const override { return "WebAssembly Register Stackify"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(LiveVariablesID); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; public: static char ID; // Pass identification, replacement for typeid WebAssemblyRegStackify() : MachineFunctionPass(ID) {} }; } // end anonymous namespace char WebAssemblyRegStackify::ID = 0; INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, "Reorder instructions to use the WebAssembly value stack", false, false) FunctionPass *llvm::createWebAssemblyRegStackify() { return new WebAssemblyRegStackify(); } // Decorate the given instruction with implicit operands that enforce the // expression stack ordering constraints for an instruction which is on // the expression stack. static void imposeStackOrdering(MachineInstr *MI) { // Write the opaque VALUE_STACK register. if (!MI->definesRegister(WebAssembly::VALUE_STACK)) MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, /*isDef=*/true, /*isImp=*/true)); // Also read the opaque VALUE_STACK register. if (!MI->readsRegister(WebAssembly::VALUE_STACK)) MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, /*isDef=*/false, /*isImp=*/true)); } // Convert an IMPLICIT_DEF instruction into an instruction which defines // a constant zero value. static void convertImplicitDefToConstZero(MachineInstr *MI, MachineRegisterInfo &MRI, const TargetInstrInfo *TII, MachineFunction &MF, LiveIntervals &LIS) { assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); if (RegClass == &WebAssembly::I32RegClass) { MI->setDesc(TII->get(WebAssembly::CONST_I32)); MI->addOperand(MachineOperand::CreateImm(0)); } else if (RegClass == &WebAssembly::I64RegClass) { MI->setDesc(TII->get(WebAssembly::CONST_I64)); MI->addOperand(MachineOperand::CreateImm(0)); } else if (RegClass == &WebAssembly::F32RegClass) { MI->setDesc(TII->get(WebAssembly::CONST_F32)); auto *Val = cast(Constant::getNullValue( Type::getFloatTy(MF.getFunction().getContext()))); MI->addOperand(MachineOperand::CreateFPImm(Val)); } else if (RegClass == &WebAssembly::F64RegClass) { MI->setDesc(TII->get(WebAssembly::CONST_F64)); auto *Val = cast(Constant::getNullValue( Type::getDoubleTy(MF.getFunction().getContext()))); MI->addOperand(MachineOperand::CreateFPImm(Val)); } else if (RegClass == &WebAssembly::V128RegClass) { MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2)); MI->addOperand(MachineOperand::CreateImm(0)); MI->addOperand(MachineOperand::CreateImm(0)); } else { llvm_unreachable("Unexpected reg class"); } } // Determine whether a call to the callee referenced by // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side // effects. static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, bool &Effects, bool &StackPointer) { // All calls can use the stack pointer. StackPointer = true; const MachineOperand &MO = WebAssembly::getCalleeOp(MI); if (MO.isGlobal()) { const Constant *GV = MO.getGlobal(); if (const auto *GA = dyn_cast(GV)) if (!GA->isInterposable()) GV = GA->getAliasee(); if (const auto *F = dyn_cast(GV)) { if (!F->doesNotThrow()) Effects = true; if (F->doesNotAccessMemory()) return; if (F->onlyReadsMemory()) { Read = true; return; } } } // Assume the worst. Write = true; Read = true; Effects = true; } // Determine whether MI reads memory, writes memory, has side effects, // and/or uses the stack pointer value. static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, bool &Write, bool &Effects, bool &StackPointer) { assert(!MI.isTerminator()); if (MI.isDebugInstr() || MI.isPosition()) return; // Check for loads. if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) Read = true; // Check for stores. if (MI.mayStore()) { Write = true; } else if (MI.hasOrderedMemoryRef()) { switch (MI.getOpcode()) { case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: // These instruction have hasUnmodeledSideEffects() returning true // because they trap on overflow and invalid so they can't be arbitrarily // moved, however hasOrderedMemoryRef() interprets this plus their lack // of memoperands as having a potential unknown memory reference. break; default: // Record volatile accesses, unless it's a call, as calls are handled // specially below. if (!MI.isCall()) { Write = true; Effects = true; } break; } } // Check for side effects. if (MI.hasUnmodeledSideEffects()) { switch (MI.getOpcode()) { case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: // These instructions have hasUnmodeledSideEffects() returning true // because they trap on overflow and invalid so they can't be arbitrarily // moved, however in the specific case of register stackifying, it is safe // to move them because overflow and invalid are Undefined Behavior. break; default: Effects = true; break; } } // Check for writes to __stack_pointer global. if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 || MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) && strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) StackPointer = true; // Analyze calls. if (MI.isCall()) { queryCallee(MI, Read, Write, Effects, StackPointer); } } // Test whether Def is safe and profitable to rematerialize. static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, const WebAssemblyInstrInfo *TII) { return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); } // Identify the definition for this register at this point. This is a // generalization of MachineRegisterInfo::getUniqueVRegDef that uses // LiveIntervals to handle complex cases. static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, const MachineRegisterInfo &MRI, const LiveIntervals &LIS) { // Most registers are in SSA form here so we try a quick MRI query first. if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) return Def; // MRI doesn't know what the Def is. Try asking LIS. if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( LIS.getInstructionIndex(*Insert))) return LIS.getInstructionFromIndex(ValNo->def); return nullptr; } // Test whether Reg, as defined at Def, has exactly one use. This is a // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals // to handle complex cases. static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, MachineDominatorTree &MDT, LiveIntervals &LIS) { // Most registers are in SSA form here so we try a quick MRI query first. if (MRI.hasOneUse(Reg)) return true; bool HasOne = false; const LiveInterval &LI = LIS.getInterval(Reg); const VNInfo *DefVNI = LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); assert(DefVNI); for (auto &I : MRI.use_nodbg_operands(Reg)) { const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); if (Result.valueIn() == DefVNI) { if (!Result.isKill()) return false; if (HasOne) return false; HasOne = true; } } return HasOne; } // Test whether it's safe to move Def to just before Insert. // TODO: Compute memory dependencies in a way that doesn't require always // walking the block. // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be // more precise. static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use, const MachineInstr *Insert, AliasAnalysis &AA, const WebAssemblyFunctionInfo &MFI, const MachineRegisterInfo &MRI) { const MachineInstr *DefI = Def->getParent(); const MachineInstr *UseI = Use->getParent(); assert(DefI->getParent() == Insert->getParent()); assert(UseI->getParent() == Insert->getParent()); // The first def of a multivalue instruction can be stackified by moving, // since the later defs can always be placed into locals if necessary. Later // defs can only be stackified if all previous defs are already stackified // since ExplicitLocals will not know how to place a def in a local if a // subsequent def is stackified. But only one def can be stackified by moving // the instruction, so it must be the first one. // // TODO: This could be loosened to be the first *live* def, but care would // have to be taken to ensure the drops of the initial dead defs can be // placed. This would require checking that no previous defs are used in the // same instruction as subsequent defs. if (Def != DefI->defs().begin()) return false; // If any subsequent def is used prior to the current value by the same // instruction in which the current value is used, we cannot // stackify. Stackifying in this case would require that def moving below the // current def in the stack, which cannot be achieved, even with locals. for (const auto &SubsequentDef : drop_begin(DefI->defs())) { for (const auto &PriorUse : UseI->uses()) { if (&PriorUse == Use) break; if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg()) return false; } } // If moving is a semantic nop, it is always allowed const MachineBasicBlock *MBB = DefI->getParent(); auto NextI = std::next(MachineBasicBlock::const_iterator(DefI)); for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) ; if (NextI == Insert) return true; // 'catch' and 'catch_all' should be the first instruction of a BB and cannot // move. if (WebAssembly::isCatch(DefI->getOpcode())) return false; // Check for register dependencies. SmallVector MutableRegisters; for (const MachineOperand &MO : DefI->operands()) { if (!MO.isReg() || MO.isUndef()) continue; Register Reg = MO.getReg(); // If the register is dead here and at Insert, ignore it. if (MO.isDead() && Insert->definesRegister(Reg) && !Insert->readsRegister(Reg)) continue; if (Register::isPhysicalRegister(Reg)) { // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions // from moving down, and we've already checked for that. if (Reg == WebAssembly::ARGUMENTS) continue; // If the physical register is never modified, ignore it. if (!MRI.isPhysRegModified(Reg)) continue; // Otherwise, it's a physical register with unknown liveness. return false; } // If one of the operands isn't in SSA form, it has different values at // different times, and we need to make sure we don't move our use across // a different def. if (!MO.isDef() && !MRI.hasOneDef(Reg)) MutableRegisters.push_back(Reg); } bool Read = false, Write = false, Effects = false, StackPointer = false; query(*DefI, AA, Read, Write, Effects, StackPointer); // If the instruction does not access memory and has no side effects, it has // no additional dependencies. bool HasMutableRegisters = !MutableRegisters.empty(); if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) return true; // Scan through the intervening instructions between DefI and Insert. MachineBasicBlock::const_iterator D(DefI), I(Insert); for (--I; I != D; --I) { bool InterveningRead = false; bool InterveningWrite = false; bool InterveningEffects = false; bool InterveningStackPointer = false; query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, InterveningStackPointer); if (Effects && InterveningEffects) return false; if (Read && InterveningWrite) return false; if (Write && (InterveningRead || InterveningWrite)) return false; if (StackPointer && InterveningStackPointer) return false; for (unsigned Reg : MutableRegisters) for (const MachineOperand &MO : I->operands()) if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) return false; } return true; } /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, const MachineBasicBlock &MBB, const MachineRegisterInfo &MRI, const MachineDominatorTree &MDT, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI) { const LiveInterval &LI = LIS.getInterval(Reg); const MachineInstr *OneUseInst = OneUse.getParent(); VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { if (&Use == &OneUse) continue; const MachineInstr *UseInst = Use.getParent(); VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); if (UseVNI != OneUseVNI) continue; if (UseInst == OneUseInst) { // Another use in the same instruction. We need to ensure that the one // selected use happens "before" it. if (&OneUse > &Use) return false; } else { // Test that the use is dominated by the one selected use. while (!MDT.dominates(OneUseInst, UseInst)) { // Actually, dominating is over-conservative. Test that the use would // happen after the one selected use in the stack evaluation order. // // This is needed as a consequence of using implicit local.gets for // uses and implicit local.sets for defs. if (UseInst->getDesc().getNumDefs() == 0) return false; const MachineOperand &MO = UseInst->getOperand(0); if (!MO.isReg()) return false; Register DefReg = MO.getReg(); if (!Register::isVirtualRegister(DefReg) || !MFI.isVRegStackified(DefReg)) return false; assert(MRI.hasOneNonDBGUse(DefReg)); const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); const MachineInstr *NewUseInst = NewUse.getParent(); if (NewUseInst == OneUseInst) { if (&OneUse > &NewUse) return false; break; } UseInst = NewUseInst; } } } return true; } /// Get the appropriate tee opcode for the given register class. static unsigned getTeeOpcode(const TargetRegisterClass *RC) { if (RC == &WebAssembly::I32RegClass) return WebAssembly::TEE_I32; if (RC == &WebAssembly::I64RegClass) return WebAssembly::TEE_I64; if (RC == &WebAssembly::F32RegClass) return WebAssembly::TEE_F32; if (RC == &WebAssembly::F64RegClass) return WebAssembly::TEE_F64; if (RC == &WebAssembly::V128RegClass) return WebAssembly::TEE_V128; llvm_unreachable("Unexpected register class"); } // Shrink LI to its uses, cleaning up LI. static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { if (LIS.shrinkToUses(&LI)) { SmallVector SplitLIs; LIS.splitSeparateComponents(LI, SplitLIs); } } /// A single-use def in the same block with no intervening memory or register /// dependencies; move the def down and nest it with the current instruction. static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI) { LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); WebAssemblyDebugValueManager DefDIs(Def); MBB.splice(Insert, &MBB, Def); DefDIs.move(Insert); LIS.handleMove(*Def); if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { // No one else is using this register for anything so we can just stackify // it in place. MFI.stackifyVReg(MRI, Reg); } else { // The register may have unrelated uses or defs; create a new register for // just our one def and use so that we can stackify it. Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); Def->getOperand(0).setReg(NewReg); Op.setReg(NewReg); // Tell LiveIntervals about the new register. LIS.createAndComputeVirtRegInterval(NewReg); // Tell LiveIntervals about the changes to the old register. LiveInterval &LI = LIS.getInterval(Reg); LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), /*RemoveDeadValNo=*/true); MFI.stackifyVReg(MRI, NewReg); DefDIs.updateReg(NewReg); LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); } imposeStackOrdering(Def); return Def; } /// A trivially cloneable instruction; clone it and nest the new copy with the /// current instruction. static MachineInstr *rematerializeCheapDef( unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); WebAssemblyDebugValueManager DefDIs(&Def); Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); Op.setReg(NewReg); MachineInstr *Clone = &*std::prev(Insert); LIS.InsertMachineInstrInMaps(*Clone); LIS.createAndComputeVirtRegInterval(NewReg); MFI.stackifyVReg(MRI, NewReg); imposeStackOrdering(Clone); LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); // Shrink the interval. bool IsDead = MRI.use_empty(Reg); if (!IsDead) { LiveInterval &LI = LIS.getInterval(Reg); shrinkToUses(LI, LIS); IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); } // If that was the last use of the original, delete the original. // Move or clone corresponding DBG_VALUEs to the 'Insert' location. if (IsDead) { LLVM_DEBUG(dbgs() << " - Deleting original\n"); SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx); LIS.removeInterval(Reg); LIS.RemoveMachineInstrFromMaps(Def); Def.eraseFromParent(); DefDIs.move(&*Insert); DefDIs.updateReg(NewReg); } else { DefDIs.clone(&*Insert, NewReg); } return Clone; } /// A multiple-use def in the same block with no intervening memory or register /// dependencies; move the def down, nest it with the current instruction, and /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite /// this: /// /// Reg = INST ... // Def /// INST ..., Reg, ... // Insert /// INST ..., Reg, ... /// INST ..., Reg, ... /// /// to this: /// /// DefReg = INST ... // Def (to become the new Insert) /// TeeReg, Reg = TEE_... DefReg /// INST ..., TeeReg, ... // Insert /// INST ..., Reg, ... /// INST ..., Reg, ... /// /// with DefReg and TeeReg stackified. This eliminates a local.get from the /// resulting code. static MachineInstr *moveAndTeeForMultiUse( unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); WebAssemblyDebugValueManager DefDIs(Def); // Move Def into place. MBB.splice(Insert, &MBB, Def); LIS.handleMove(*Def); // Create the Tee and attach the registers. const auto *RegClass = MRI.getRegClass(Reg); Register TeeReg = MRI.createVirtualRegister(RegClass); Register DefReg = MRI.createVirtualRegister(RegClass); MachineOperand &DefMO = Def->getOperand(0); MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), TII->get(getTeeOpcode(RegClass)), TeeReg) .addReg(Reg, RegState::Define) .addReg(DefReg, getUndefRegState(DefMO.isDead())); Op.setReg(TeeReg); DefMO.setReg(DefReg); SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); DefDIs.move(Insert); // Tell LiveIntervals we moved the original vreg def from Def to Tee. LiveInterval &LI = LIS.getInterval(Reg); LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); VNInfo *ValNo = LI.getVNInfoAt(DefIdx); I->start = TeeIdx; ValNo->def = TeeIdx; shrinkToUses(LI, LIS); // Finish stackifying the new regs. LIS.createAndComputeVirtRegInterval(TeeReg); LIS.createAndComputeVirtRegInterval(DefReg); MFI.stackifyVReg(MRI, DefReg); MFI.stackifyVReg(MRI, TeeReg); imposeStackOrdering(Def); imposeStackOrdering(Tee); DefDIs.clone(Tee, DefReg); DefDIs.clone(Insert, TeeReg); LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); return Def; } namespace { /// A stack for walking the tree of instructions being built, visiting the /// MachineOperands in DFS order. class TreeWalkerState { using mop_iterator = MachineInstr::mop_iterator; using mop_reverse_iterator = std::reverse_iterator; using RangeTy = iterator_range; SmallVector Worklist; public: explicit TreeWalkerState(MachineInstr *Insert) { const iterator_range &Range = Insert->explicit_uses(); if (!Range.empty()) Worklist.push_back(reverse(Range)); } bool done() const { return Worklist.empty(); } MachineOperand &pop() { RangeTy &Range = Worklist.back(); MachineOperand &Op = *Range.begin(); Range = drop_begin(Range); if (Range.empty()) Worklist.pop_back(); assert((Worklist.empty() || !Worklist.back().empty()) && "Empty ranges shouldn't remain in the worklist"); return Op; } /// Push Instr's operands onto the stack to be visited. void pushOperands(MachineInstr *Instr) { const iterator_range &Range(Instr->explicit_uses()); if (!Range.empty()) Worklist.push_back(reverse(Range)); } /// Some of Instr's operands are on the top of the stack; remove them and /// re-insert them starting from the beginning (because we've commuted them). void resetTopOperands(MachineInstr *Instr) { assert(hasRemainingOperands(Instr) && "Reseting operands should only be done when the instruction has " "an operand still on the stack"); Worklist.back() = reverse(Instr->explicit_uses()); } /// Test whether Instr has operands remaining to be visited at the top of /// the stack. bool hasRemainingOperands(const MachineInstr *Instr) const { if (Worklist.empty()) return false; const RangeTy &Range = Worklist.back(); return !Range.empty() && Range.begin()->getParent() == Instr; } /// Test whether the given register is present on the stack, indicating an /// operand in the tree that we haven't visited yet. Moving a definition of /// Reg to a point in the tree after that would change its value. /// /// This is needed as a consequence of using implicit local.gets for /// uses and implicit local.sets for defs. bool isOnStack(unsigned Reg) const { for (const RangeTy &Range : Worklist) for (const MachineOperand &MO : Range) if (MO.isReg() && MO.getReg() == Reg) return true; return false; } }; /// State to keep track of whether commuting is in flight or whether it's been /// tried for the current instruction and didn't work. class CommutingState { /// There are effectively three states: the initial state where we haven't /// started commuting anything and we don't know anything yet, the tentative /// state where we've commuted the operands of the current instruction and are /// revisiting it, and the declined state where we've reverted the operands /// back to their original order and will no longer commute it further. bool TentativelyCommuting = false; bool Declined = false; /// During the tentative state, these hold the operand indices of the commuted /// operands. unsigned Operand0, Operand1; public: /// Stackification for an operand was not successful due to ordering /// constraints. If possible, and if we haven't already tried it and declined /// it, commute Insert's operands and prepare to revisit it. void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, const WebAssemblyInstrInfo *TII) { if (TentativelyCommuting) { assert(!Declined && "Don't decline commuting until you've finished trying it"); // Commuting didn't help. Revert it. TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); TentativelyCommuting = false; Declined = true; } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) { Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { // Tentatively commute the operands and try again. TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); TreeWalker.resetTopOperands(Insert); TentativelyCommuting = true; Declined = false; } } } /// Stackification for some operand was successful. Reset to the default /// state. void reset() { TentativelyCommuting = false; Declined = false; } }; } // end anonymous namespace bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" "********** Function: " << MF.getName() << '\n'); bool Changed = false; MachineRegisterInfo &MRI = MF.getRegInfo(); WebAssemblyFunctionInfo &MFI = *MF.getInfo(); const auto *TII = MF.getSubtarget().getInstrInfo(); const auto *TRI = MF.getSubtarget().getRegisterInfo(); AliasAnalysis &AA = getAnalysis().getAAResults(); auto &MDT = getAnalysis(); auto &LIS = getAnalysis(); // Walk the instructions from the bottom up. Currently we don't look past // block boundaries, and the blocks aren't ordered so the block visitation // order isn't significant, but we may want to change this in the future. for (MachineBasicBlock &MBB : MF) { // Don't use a range-based for loop, because we modify the list as we're // iterating over it and the end iterator may change. for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { MachineInstr *Insert = &*MII; // Don't nest anything inside an inline asm, because we don't have // constraints for $push inputs. if (Insert->isInlineAsm()) continue; // Ignore debugging intrinsics. if (Insert->isDebugValue()) continue; // Iterate through the inputs in reverse order, since we'll be pulling // operands off the stack in LIFO order. CommutingState Commuting; TreeWalkerState TreeWalker(Insert); while (!TreeWalker.done()) { MachineOperand &Use = TreeWalker.pop(); // We're only interested in explicit virtual register operands. if (!Use.isReg()) continue; Register Reg = Use.getReg(); assert(Use.isUse() && "explicit_uses() should only iterate over uses"); assert(!Use.isImplicit() && "explicit_uses() should only iterate over explicit operands"); if (Register::isPhysicalRegister(Reg)) continue; // Identify the definition for this register at this point. MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS); if (!DefI) continue; // Don't nest an INLINE_ASM def into anything, because we don't have // constraints for $pop outputs. if (DefI->isInlineAsm()) continue; // Argument instructions represent live-in registers and not real // instructions. if (WebAssembly::isArgument(DefI->getOpcode())) continue; MachineOperand *Def = DefI->findRegisterDefOperand(Reg); assert(Def != nullptr); // Decide which strategy to take. Prefer to move a single-use value // over cloning it, and prefer cloning over introducing a tee. // For moving, we require the def to be in the same block as the use; // this makes things simpler (LiveIntervals' handleMove function only // supports intra-block moves) and it's MachineSink's job to catch all // the sinking opportunities anyway. bool SameBlock = DefI->getParent() == &MBB; bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, AA, MFI, MRI) && !TreeWalker.isOnStack(Reg); if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) { Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI); // If we are removing the frame base reg completely, remove the debug // info as well. // TODO: Encode this properly as a stackified value. if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) MFI.clearFrameBaseVreg(); } else if (shouldRematerialize(*DefI, AA, TII)) { Insert = rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(), LIS, MFI, MRI, TII, TRI); } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT, LIS, MFI)) { Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI, TII); } else { // We failed to stackify the operand. If the problem was ordering // constraints, Commuting may be able to help. if (!CanMove && SameBlock) Commuting.maybeCommute(Insert, TreeWalker, TII); // Proceed to the next operand. continue; } // Stackifying a multivalue def may unlock in-place stackification of // subsequent defs. TODO: Handle the case where the consecutive uses are // not all in the same instruction. auto *SubsequentDef = Insert->defs().begin(); auto *SubsequentUse = &Use; while (SubsequentDef != Insert->defs().end() && SubsequentUse != Use.getParent()->uses().end()) { if (!SubsequentDef->isReg() || !SubsequentUse->isReg()) break; unsigned DefReg = SubsequentDef->getReg(); unsigned UseReg = SubsequentUse->getReg(); // TODO: This single-use restriction could be relaxed by using tees if (DefReg != UseReg || !MRI.hasOneUse(DefReg)) break; MFI.stackifyVReg(MRI, DefReg); ++SubsequentDef; ++SubsequentUse; } // If the instruction we just stackified is an IMPLICIT_DEF, convert it // to a constant 0 so that the def is explicit, and the push/pop // correspondence is maintained. if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); // We stackified an operand. Add the defining instruction's operands to // the worklist stack now to continue to build an ever deeper tree. Commuting.reset(); TreeWalker.pushOperands(Insert); } // If we stackified any operands, skip over the tree to start looking for // the next instruction we can build a tree on. if (Insert != &*MII) { imposeStackOrdering(&*MII); MII = MachineBasicBlock::iterator(Insert).getReverse(); Changed = true; } } } // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so // that it never looks like a use-before-def. if (Changed) { MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); for (MachineBasicBlock &MBB : MF) MBB.addLiveIn(WebAssembly::VALUE_STACK); } #ifndef NDEBUG // Verify that pushes and pops are performed in LIFO order. SmallVector Stack; for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) { if (MI.isDebugInstr()) continue; for (MachineOperand &MO : reverse(MI.explicit_uses())) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (MFI.isVRegStackified(Reg)) assert(Stack.pop_back_val() == Reg && "Register stack pop should be paired with a push"); } for (MachineOperand &MO : MI.defs()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (MFI.isVRegStackified(Reg)) Stack.push_back(MO.getReg()); } } // TODO: Generalize this code to support keeping values on the stack across // basic block boundaries. assert(Stack.empty() && "Register stack pushes and pops should be balanced"); } #endif return Changed; }